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OpenSoundscape is free and open source software for the analysis of bioacoustic recordings (GitHub). Its main goals
are to allow users to train their own custom species classification models using a variety of frameworks (including
convolutional neural networks) and to use trained models to predict whether species are present in field recordings.
OpSo can be installed and run on a single computer or in a cluster or cloud environment.

OpenSoundcape is developed and maintained by the Kitzes Lab at the University of Pittsburgh.

The Installation section below provides guidance on installing OpSo. The Tutorials pages below are written as Jupyter
Notebooks that can also be downloaded from the project repository on GitHub.

Contents 1
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CHAPTER 1

Mac and Linux

OpenSoundscape can be installed on Mac and Linux machines with Python 3.7 using the pip command pip
install opensoundscape==0.4.7. We recommend installing OpenSoundscape in a virtual environment to
prevent dependency conflicts.

Below are instructions for installation with two package managers:

• conda: Python and package management through Anaconda, a package manager popular among scientific
programmers

• venv: Python’s included virtual environment manager, venv

Feel free to use another virtual environment manager (e.g. virtualenvwrapper) if desired.

1.1 Installation via Anaconda

• Install Anaconda if you don’t already have it.

– Download the installer here, or

– follow the installation instructions for your operating system.

• Create a Python 3.7 conda environment for opensoundscape: conda create --name
opensoundscape pip python=3.7

• Activate the environment: conda activate opensoundscape

• Install opensoundscape using pip: pip install opensoundscape==0.4.7

• Deactivate the environment when you’re done using it: conda deactivate

1.2 Installation via venv

Download Python 3.7 from this website.

3
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Run the following commands in your bash terminal:

• Check that you have installed Python 3.7._: python3 --version

• Change directories to where you wish to store the environment: cd [path for environments
folder]

– Tip: You can use this folder to store virtual environments for other projects as well, so put it somewhere
that makes sense for you, e.g. in your home directory.

• Make a directory for virtual environments and cd into it: mkdir .venv && cd .venv

• Create an environment called opensoundscape in the directory: python3 -m venv
opensoundscape

• Activate/use the environment: source opensoundscape/bin/activate

• Install OpenSoundscape in the environment: pip install opensoundscape==0.4.7

• Once you are done with OpenSoundscape, deactivate the environment: deactivate

• To use the environment again, you will have to refer to absolute path of the virtual environments folder. For
instance, if I were on a Mac and created .venv inside a directory /Users/MyFiles/Code I would ac-
tivate the virtual environment using: source /Users/MyFiles/Code/.venv/opensoundscape/
bin/activate

For some of our functions, you will need a version of ffmpeg >= 0.4.1. On Mac machines, ffmpeg can be
installed via brew.

4 Chapter 1. Mac and Linux



CHAPTER 2

Windows

We recommend that Windows users install and use OpenSoundscape using Windows Subsystem for Linux, because
some of the machine learning and audio processing packages required by OpenSoundscape do not install easily on
Windows computers. Below we describe the typical installation method. This gives you access to a Linux operating
system (we recommend Ubuntu 20.04) in which to use Python and install and use OpenSoundscape. Using Ubuntu
20.04 is as simple as opening a program on your computer.

2.1 Get Ubuntu shell

If you don’t already use Windows Subsystem for Linux (WSL), activate it using the following:

• Search for the “Powershell” program on your computer

• Right click on “Powershell,” then click “Run as administrator” and in the pop-up, allow it to run as administrator

• Install WSL1 (more information: https://docs.microsoft.com/en-us/windows/wsl/install-win10):

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /
→˓all /norestart

• Restart your computer

Once you have WSL, follow these steps to get an Ubuntu shell on your computer:

• Open Windows Store, search for “Ubuntu” and click “Ubuntu 20.04 LTS”

• Click “Get”, wait for the program to download, then click “Launch”

• An Ubuntu shell will open. Wait for Ubuntu to install.

• Set username and password to something you will remember

• Run sudo apt update and type in the password you just set

5
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2.2 Download Anaconda

We recommend installing OpenSoundscape in a package manager. We find that the easiest package manager for
new users is “Anaconda,” a program which includes Python and tools for managing Python packages. Below are
instructions for downloading Anaconda in the Ubuntu environment.

• Open this page and scroll down to the “Anaconda Installers” section. Under the Linux section, right click on the
link “64-Bit (x86) Installer” and click “Copy link”‘

• Download the installer:

– Open the Ubuntu terminal

– Type in wget then paste the link you copied, e.g.: (the filename of your file may differ)

wget https://repo.anaconda.com/archive/Anaconda3-2020.07-Linux-x86_64.sh

• Execute the downloaded installer, e.g.: (the filename of your file may differ)

bash Anaconda3-2020.07-Linux-x86_64.sh

– Press ENTER, read the installation requirements, press Q, then type “yes” and press enter to install

– Wait for it to install

– If your download hangs, press CTRL+C, rm -rf ~/anaconda3 and try again

• Type “yes” to initialize conda

– If you skipped this step, initialize your conda installation: run source ~/anaconda3/bin/
activate and then after that command has run, conda init.

• Remove the downloaded file after installation, e.g. rm Anaconda3-2020.07-Linux-x86_64.sh

• Close and reopen terminal window to have access to the initialized Anaconda distribution

You can now manage packages with conda.

2.3 Install OpenSoundscape in virtual environment

• Create a Python 3.7 conda environment for opensoundscape: conda create --name
opensoundscape pip python=3.7

• Activate the environment: conda activate opensoundscape

• Install opensoundscape using pip: pip install opensoundscape==0.4.7

If you run into this error and you are on a Windows 10 machine:

(opensoundscape_environment) username@computername:~$ pip install opensoundscape==0.4.
→˓7
WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None,
→˓status=None)) after connection broken by 'NewConnectionError('<pip._vendor.urllib3.
→˓connection.HTTPSConnection object at 0x7f7603c5da90>: Failed to establish a new
→˓connection: [Errno -2] Name or service not known')': /simple/opensoundscape/

You may be able to solve it by going to System Settings, searching for “Proxy Settings,” and beneath “Automatic proxy
setup,” turning “Automatically detect settings” OFF. Restart your terminal for changes to take effect. Then activate the
environment and install OpenSoundscape using pip.

6 Chapter 2. Windows
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CHAPTER 3

Contributors

Contributors and advanced users can use this workflow to install via Poetry. Poetry installation allows direct use of the
most recent version of the code. This workflow allows advanced users to use the newest features in OpenSoundscape,
and allows developers/contributors to build and test their contributions.

3.1 Poetry installation

• Download poetry

• Download virtualenvwrapper

• Link poetry and virtualenvwrapper:

– Figure out where the virtualenvwrapper.sh file is: which virtualenvwrapper.sh

– Add the following to your ~/.bashrc and source it.

# virtualenvwrapper + poetry
export PATH=~/.local/bin:$PATH
export WORKON_HOME=~/Library/Caches/pypoetry/virtualenvs
source [insert path to virtualenvwrapper.sh, e.g. ~/.local/bin/
→˓virtualenvwrapper_lazy.sh]

• Users: clone this github repository to your machine: git clone https://github.com/kitzeslab/
opensoundscape.git

• Contributors: fork this github repository and clone the fork to your machine

• Ensure you are in the top-level directory of the clone

• Switch to the development branch of OpenSoundscape: git checkout develop

• Build the virtual environment for opensoundscape: poetry install

– If poetry install outputs the following error, make sure to download Python 3.7:

7
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Installing build dependencies: started
Installing build dependencies: finished with status 'done'
opensoundscape requires Python '>=3.7,<4.0' but the running Python is 3.6.10

If you are using conda, install Python 3.7 using conda install python==3.7

– If you are on a Mac and poetry install fails to install numba, contact one of the developers for help
troubleshooting your issues.

• Activate the virtual environment with the name provided at install e.g.: workon
opensoundscape-dxMTH98s-py3.7 or poetry shell

• Check that OpenSoundscape runs: opensoundscape -h

• Run tests (from the top-level directory): poetry run pytest

• Go back to your system’s Python when you are done: deactivate

3.2 Contribution workflow

3.2.1 Contributing to code

Make contributions by editing the code in your fork. Create branches for features using git
checkout -b feature_branch_name and push these changes to remote using git push -u origin
feature_branch_name. To merge a feature branch into the development branch, use the GitHub web interface
to create a merge request.

When contributions in your fork are complete, open a pull request using the GitHub web interface. Before opening a
PR, do the following to ensure the code is consistent with the rest of the package:

• Run tests: poetry run pytest

• Format the code with black style (from the top level of the repo): poetry run black .

– To automatically handle this, poetry run pre-commit install

• Additional libraries to be installed should be installed with poetry add, but in most cases contributors should
not add libraries.

3.2.2 Contributing to documentation

Build the documentation using either poetry or sphinx-build

• With poetry: poetry run build_docs

• With sphinx-build: sphinx-build doc doc/_build

8 Chapter 3. Contributors



CHAPTER 4

Jupyter

To use OpenSoundscape in JupyterLab or in a Jupyter Notebook, you may either start Jupyter from within your
OpenSoundscape virtual environment and use the “Python 3” kernel in your notebooks, or create a separate “Open-
Soundscape” kernel using the instructions below

The following steps assume you have already used your operating system-specific installation instructions to create a
virtual environement containing OpenSoundscape and its dependencies.

4.1 Use virtual environment

• Activate your virtual environment

• Start JupyterLab or Jupyter Notebook from inside the conda environment, e.g.: jupyter lab

• Copy and paste the JupyterLab link into your web browser

With this method, the default “Python 3” kernel will be able to import opensoundscape modules.

4.2 Create independent kernel

Use the following steps to create a kernel that appears in any notebook you open, not just notebooks opened from your
virtual environment.

• Activate your virtual environment to have access to the ipykernel package

• Create ipython kernel with the following command, replacing ENV_NAME with the name of your OpenSound-
scape virtual environment.

python -m ipykernel install --user --name=ENV_NAME --display-name=OpenSoundscape

• Now when you make a new notebook on JupyterLab, or change kernels on an existing notebook, you can choose
to use the “OpenSoundscape” Python kernel

9
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Contributors: if you include Jupyter’s autoreload, any changes you make to the source code installed via poetry
will be reflected whenever you run the %autoreload line magic in a cell:

%load_ext autoreload
%autoreload

10 Chapter 4. Jupyter



CHAPTER 5

Audio and spectrograms

This tutorial demonstrates how to use OpenSoundscape to open and modify audio files and spectrograms.

Audio files can be loaded into OpenSoundscape and modified using its Audio class. The class gives access to modifi-
cations such as trimming short clips from longer recordings, splitting a long clip into multiple segments, bandpassing
recordings, and extending the length of recordings by looping them. Spectrograms can be created from Audio ob-
jects using the Spectrogram class. This class also allows useful features like measuring the amplitude signal of a
recording, trimming a spectrogram in time and frequency, and converting the spectrogram to a saveable image.

To download the tutorial as a Jupyter Notebook, click the “Edit on GitHub” button at the top right of the tutorial. Using
it requires that you install OpenSoundscape and follow the instructions for using it in Jupyter.

This tutorial uses an example audio file downloadable with the OpenSoundscape package. To use your own file for
the following examples, replace the path in the line below with the absolute path to the file:

[1]: audio_filename = '../../tests/audio/1min.wav'

5.1 Quickstart

First, load the classes from OpenSoundscape.

[2]: # import Audio and Spectrogram classes from OpenSoundscape
from opensoundscape.audio import Audio
from opensoundscape.spectrogram import Spectrogram

The following code loads an audio file, creates a 224px x 224px -sized spectrogram from it, then creates and saves an
image of the spectrogram to the desired path. Each step is discussed in depth below.

[3]: from pathlib import Path
# Settings
image_shape = (224,224)
image_path = Path('./saved_spectrogram.png')

(continues on next page)
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(continued from previous page)

# Open as Audio
audio = Audio.from_file(audio_filename)

# Convert into spectrogram
spectrogram = Spectrogram.from_audio(audio)

# Convert into image
image = spectrogram.to_image(shape=image_shape)

# Save image
image.save(image_path)

The above function calls can be condensed to a single line:

[4]: Spectrogram.from_audio(Audio.from_file(audio_filename)).to_image(shape=image_shape).
→˓save(image_path)

5.2 Audio loading

Load audio files using OpenSoundscape’s Audio class.

OpenSoundscape uses a package called librosa to help load audio files. Librosa automatically supports .wav files,
but to use .mp3 files requires that librosa be installed with a package like ffmpeg. See Librosa’s installation tips for
more information.

Load the example audio from file:

[5]: audio_object = Audio.from_file(audio_filename)

5.2.1 Audio properties

The properties of an Audio object include its samples (the actual audio data) and the sample rate (the number of
audio samples taken per second, required to understand the samples). After an audio file has been loaded, these can
be accessed using the samples and sample_rate properties, respectively.

[6]: audio_object.samples

[6]: array([-0.00888062, -0.00344849, 0.00378418, ..., -0.00048828,
0.00253296, 0.00109863], dtype=float32)

[7]: audio_object.sample_rate

[7]: 32000

5.2.2 Loading options

By default, an audio object is loaded with the same sample rate as the source recording. When loading from a file, the
sampling rate can be changed or specified. This is useful when working with multiple files and ensuring that all files
have a consistent sampling rate. Below, load the same audio file as above, but specify a sampling rate of 22050 Hz.

[8]: audio_object_resample = Audio.from_file(audio_filename, sample_rate=22050)
audio_object_resample.sample_rate

12 Chapter 5. Audio and spectrograms
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[8]: 22050

For other options when loading audio objects, see the `from_file() documentation
<api.html#opensoundscape.audio.Audio.from_file>‘__.

5.3 Audio methods

The Audio class gives access to a variety of tools to change audio files, load them with special properties, or get
information about them. The below examples demonstrate how to bandpass audio recordings, get their duration,
extending their length, and trim them. These modifications do not change the original object or the original file itself;
instead, they save or return new objects.

Another helpful tool enables the user to trim a series of consecutive clips from a longer audio file. This can be
used to split up long files to ready them as inputs to machine learning algorithms. For an example of this, see the
data preparation section of the prediction tutorial. For a description of the entire Audio object API, see the API
documentation.

5.3.1 Bandpassing

Bandpass the audio file to limit its frequency range to 1000 Hz to 5000 Hz.

[9]: bandpassed = audio_object.bandpass(low_f = 1000, high_f = 5000, order=9)

5.3.2 Duration

Get the current duration of the audio in audio_object.

[10]: length = audio_object.duration()
print(length)

60.0

5.3.3 Extending

Using the duration gotten above, extend the recording to twice its original duration. Internally, this function loops the
recording until it reaches the desired length.

[11]: extended = audio_object.extend(length * 2)
print(extended.duration())

120.0

5.3.4 Trimming

Trim the extended recording to its original length again, but select the last 60 seconds instead of the first 60 seconds.

[12]: trimmed = extended.trim(start_time = 60.0, end_time = 120.0)

The below logic shows that the samples of the original audio object are equal to the samples of the extended-then-
trimmed audio object.

5.3. Audio methods 13
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[13]: from numpy.testing import assert_array_equal
assert_array_equal(trimmed.samples, audio_object.samples)

5.4 Spectrogram creation

5.4.1 Loading spectrograms

A Spectrogram object can be created from an audio object using the from_audio() method.

[14]: audio_object = Audio.from_file(audio_filename)
spectrogram_object = Spectrogram.from_audio(audio_object)

Spectrograms can also be loaded from saved images using the from_file() method.

5.4.2 Spectrogram properties

To check the scale of a spectrogram, you can look at its times and frequencies properties. The times prop-
erty is the list of times represented by each column of the spectrogram. The frequencies property is the list of
frequencies represented by each row of the spectrogram. These are not the actual values of the spectrogram – just the
scale of the spectrogram itself.

[15]: spec = Spectrogram.from_audio(Audio.from_file(audio_filename))
print(f'the first few times: {spec.times[0:5]}')
print(f'the first few frequencies: {spec.frequencies[0:5]}')

the first few times: [0.008 0.016 0.024 0.032 0.04 ]
the first few frequencies: [ 0. 62.5 125. 187.5 250. ]

5.4.3 Loading options

Loading a spectrogram from an Audio object gives access to several options to customize the calculation of the
spectrogram. For instance, use the following steps to create a spectrogram with a higher time-resolution.

First, load an audio file with high sample rate.

[16]: audio = Audio.from_file(audio_filename, sample_rate=44100)

Next, create a spectrogram with 100-sample windows (100/44100 s of audio per window) and no overlap.

[17]: spec = Spectrogram.from_audio(audio, window_samples=100, overlap_samples=0)

Note that while this increases the time-resolution of a spectrogram, it reduces the frequency-resolution of the spectro-
gram.

For other options when loading spectrogram objects from audio objects, see the `from_audio() documentation
<api.html#opensoundscape.spectrogram.Spectrogram.from_audio>‘__.
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5.5 Spectrogram methods

The tools and features of the spectrogram class are demonstrated here, including plotting; how spectrograms can
be generated from modified audio; saving a spectrogram as an image; customizing a spectrogram; trimming and
bandpassing a spectrogram; and calculating the amplitude signal from a spectrogram.

5.5.1 Plotting

A Spectrogram object can be plotted using its plot() method.

[18]: audio_object = Audio.from_file(audio_filename)
spectrogram_object = Spectrogram.from_audio(audio_object)
spectrogram_object.plot()

5.5.2 Loading modified audio

The from_audiomethod converts whatever audio is inside the audio object into a spectrogram. So, modified Audio
objects can be turned into spectrograms as well.

For example, the code below demonstrates creating a spectrogram from a 5 second long trim of the audio object.
Compare this plot to the plot above.

[19]: # Trim the original audio
trimmed = audio_object.trim(0, 5)

# Create a spectrogram from the trimmed audio
spec = Spectrogram.from_audio(trimmed)

# Plot the spectrogram
spec.plot()
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5.5.3 Saving a spectrogram

To save the created spectrogram, first convert it to an image. It will no longer be an OpenSoundscape Spectrogram
object, but instead a Python Image Library (PIL) Image object.

[20]: print("Type of `spectrogram_audio`, before conversion:", type(spectrogram_object))
spectrogram_image = spectrogram_object.to_image()
print("Type of `spectrogram_image`, after conversion:", type(spectrogram_image))

Type of `spectrogram_audio`, before conversion: <class 'opensoundscape.spectrogram.
→˓Spectrogram'>
Type of `spectrogram_image`, after conversion: <class 'PIL.Image.Image'>

Save the PIL Image using its save() method, supplying the filename at which you want to save the image.

[21]: image_path = Path('./saved_spectrogram.png')
spectrogram_image.save(image_path)

To save the spectrogram at a desired size, specify the image shape when converting the Spectrogram to a PIL
Image.

[22]: image_shape = (512,512)
large_image_path = Path('./saved_spectrogram_large.png')
spectrogram_image = spectrogram_object.to_image(shape=image_shape)
spectrogram_image.save(large_image_path)

5.5.4 Trimming

Spectrograms can be trimmed in time using trim(). Trim the above spectrogram to zoom in on one vocalization.

[23]: spec_trimmed = spec.trim(1.7, 3.9)
spec_trimmed.plot()
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5.5.5 Bandpassing

Spectrograms can be trimmed in frequency using bandpass(). For instance, the vocalization zoomed in on above
is the song of a Black-and-white Warbler (Mniotilta varia), one of the highest-frequency bird songs in our area. Set
its approximate frequency range.

[24]: baww_low_freq = 5500
baww_high_freq = 9500

Bandpass the above time-trimmed spectrogram in frequency as well to limit the spectrogram view to the vocalization
of interest.

[25]: spec_bandpassed = spec_trimmed.bandpass(baww_low_freq, baww_high_freq)
spec_bandpassed.plot()
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5.5.6 Calculating amplitude signal

OpenSoundscape can calculate the amplitude of an audio file over time using the Spectrogram class. First, make a
spectrogram from 5 seconds’ worth of audio.

[26]: spec = Spectrogram.from_audio(Audio.from_file(audio_filename).trim(0,5))

Next, use the amplitude() method to get the amplitude signal.

[27]: high_freq_amplitude = spec.amplitude()

Plot this signal over time to visualize it.

[28]: from matplotlib import pyplot as plt
plt.plot(spec.times,high_freq_amplitude)
plt.xlabel('time (sec)')
plt.ylabel('amplitude')
plt.show()

It is also possible to get the amplitude signal from a restricted range of frequencies, e.g., to look at the amplitude in
the frequency range of a species of interest.

Look again at the frequency range of the Black-and-white Warbler, discussed above.

[29]: # Get amplitude signal
high_freq_amplitude = spec.amplitude(freq_range=[baww_low_freq, baww_high_freq])

# Plot signal
plt.plot(spec.times, high_freq_amplitude)
plt.xlabel('time (sec)')
plt.ylabel('amplitude')
plt.show()
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The amplitude in the Black-and-white Warbler frequency range is on average lower in the first two seconds of the
recording, gets higher when the warbler sings between 2-4s, and then drops off at 4s. At 4-5s into the recording, there
are large spikes in this frequency range from high-frequency noise, the loud “chips” of another animal.

Amplitude signals like these can be used to identify periodic calls, like those by many species of frogs. A pulsing-call
identification pipeline called RIBBIT is implemented in OpenSoundscape.

Amplitude signals may not be the most reliable method of identification for species like birds. In this case, it is
possible to create a machine learning algorithm to identify calls based on their appearance on spectrograms. For more
information, see the algorithm training tutorial. The developers of OpenSoundscape have trained machine learning
models for over 500 common North American bird species; for examples of how to download demonstration models,
see the prediction tutorial.

Clean up

Clean up the files created during this demo.

[30]: image_path.unlink()
large_image_path.unlink()
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CHAPTER 6

Raven annotations

Raven Sound Analysis Software enables users to inspect spectrograms, draw time and frequency boxes around sounds
of interest, and label these boxes with species identities. OpenSoundscape contains functionality to prepare and use
these annotations for machine learning.

6.1 Download annotated data

We published an example Raven-annotated dataset here: https://doi.org/10.1002/ecy.3329

[1]: from opensoundscape.commands import run_command
from pathlib import Path

Download the zipped data here:

[2]: link = "https://esajournals.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.
→˓1002%2Fecy.3329&file=ecy3329-sup-0001-DataS1.zip"
name = 'powdermill_data.zip'
out = run_command(f"wget -O powdermill_data.zip {link}")

Unzip the files to a new directory, powdermill_data/

[3]: out = run_command("unzip powdermill_data.zip -d powdermill_data")

Keep track of the files we have now so we can delete them later.

[4]: files_to_delete = [Path("powdermill_data"), Path("powdermill_data.zip")]

6.2 Preprocess Raven data

The opensoundscape.raven module contains preprocessing functions for Raven data, including: *
annotation_check - for all the selections files, make sure they all contain labels * lowercase_annotations
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- lowercase all of the annotations * generate_class_corrections - create a CSV to see whether there are any
weird names * Modify the CSV as needed. If you need to look up files you can use query_annotations * Can
be used in SplitterDataset * apply_class_corrections - replace incorrect labels with correct labels *
query_annotations - look for files that contain a particular species or a typo

[5]: import pandas as pd
import opensoundscape.raven as raven
import opensoundscape.audio as audio

[6]: raven_files_raw = Path("./powdermill_data/Annotation_Files/")

6.2.1 Check Raven files have labels

Check that all selections files contain labels under one column name. In this dataset the labels column is named
"species".

[7]: raven.annotation_check(directory=raven_files_raw, col='species')

All rows in powdermill_data/Annotation_Files contain labels in column `species`

6.2.2 Create lowercase files

Convert all the text in the files to lowercase to standardize them. Save these to a new directory. They will be saved
with the same filename but with “.lower” appended.

[8]: raven_directory = Path('./powdermill_data/Annotation_Files_Standardized')
if not raven_directory.exists(): raven_directory.mkdir()
raven.lowercase_annotations(directory=raven_files_raw, out_dir=raven_directory)

Check that the outputs are saved as expected.

[9]: list(raven_directory.glob("*.lower"))[:5]

[9]: [PosixPath('powdermill_data/Annotation_Files_Standardized/Recording_1_Segment_22.
→˓Table.1.selections.txt.lower'),
PosixPath('powdermill_data/Annotation_Files_Standardized/Recording_4_Segment_15.
→˓Table.1.selections.txt.lower'),
PosixPath('powdermill_data/Annotation_Files_Standardized/Recording_4_Segment_24.
→˓Table.1.selections.txt.lower'),
PosixPath('powdermill_data/Annotation_Files_Standardized/Recording_1_Segment_13.
→˓Table.1.selections.txt.lower'),
PosixPath('powdermill_data/Annotation_Files_Standardized/Recording_1_Segment_06.
→˓Table.1.selections.txt.lower')]

6.2.3 Generate class corrections

This function generates a table that can be modified by hand to correct labels with typos in them. It identifies the unique
labels in the provided column (here "species") in all of the lowercase files in the directory raven_directory.

For instance, the generated table could be something like the following:
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raw,corrected
sparrow,sparrow
sparow,sparow
goose,goose

[10]: print(raven.generate_class_corrections(directory=raven_directory, col='species'))

raw,corrected
amcr,amcr
amgo,amgo
amre,amre
amro,amro
baor,baor
baww,baww
bbwa,bbwa
bcch,bcch
bggn,bggn
bhco,bhco
bhvi,bhvi
blja,blja
brcr,brcr
btnw,btnw
bwwa,bwwa
cang,cang
carw,carw
cedw,cedw
cora,cora
coye,coye
cswa,cswa
dowo,dowo
eato,eato
eawp,eawp
hawo,hawo
heth,heth
howa,howa
kewa,kewa
lowa,lowa
nawa,nawa
noca,noca
nofl,nofl
oven,oven
piwo,piwo
rbgr,rbgr
rbwo,rbwo
rcki,rcki
revi,revi
rsha,rsha
rwbl,rwbl
scta,scta
swth,swth
tuti,tuti
veer,veer
wbnu,wbnu
witu,witu
woth,woth
ybcu,ybcu
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The released dataset has no need for class corrections, but if it did, we could save the return text to a CSV and use the
CSV to apply corrections to future dataframes.

6.2.4 Query annotations

This function can be used to print all annotations of a particular class, e.g. “amro” (American Robin)

[11]: output = raven.query_annotations(directory=raven_directory, cls='amro', col='species',
→˓ print_out=True)

=================================================================================================
powdermill_data/Annotation_Files_Standardized/Recording_4_Segment_16.Table.1.
→˓selections.txt.lower
=================================================================================================

selection view channel begin time (s) end time (s) \
85 86 spectrogram 1 1 77.634876 82.129659
93 94 spectrogram 1 1 84.226733 86.313096
98 99 spectrogram 1 1 88.825438 91.272182
107 108 spectrogram 1 1 96.028977 97.552840
111 112 spectrogram 1 1 99.990354 100.914517
116 117 spectrogram 1 1 104.327755 108.656087
122 123 spectrogram 1 1 109.525937 112.021391
129 130 spectrogram 1 1 113.765766 117.386474
137 138 spectrogram 1 1 121.053454 121.383161
141 142 spectrogram 1 1 124.864220 129.139630
154 155 spectrogram 1 1 132.583749 135.017840
162 163 spectrogram 1 1 139.602300 142.087527
168 169 spectrogram 1 1 143.969913 146.785822
176 177 spectrogram 1 1 149.282840 151.873748
210 211 spectrogram 1 1 170.636021 174.123521
225 226 spectrogram 1 1 178.252401 181.670619
238 239 spectrogram 1 1 184.176135 188.110226
250 251 spectrogram 1 1 190.244089 192.858862
267 268 spectrogram 1 1 203.737856 204.958310
277 278 spectrogram 1 1 211.662233 216.270763

low freq (hz) high freq (hz) species
85 1539.7 3668.7 amro
93 1349.6 3630.6 amro
98 1539.7 4029.8 amro
107 1159.5 3573.6 amro
111 1539.7 3440.4 amro
116 1368.6 3041.4 amro
122 1577.7 3041.4 amro
129 1602.9 3831.4 amro
137 1993.9 2813.1 amro
141 1558.7 4200.9 amro
154 2186.0 3782.7 amro
162 1634.7 4200.9 amro
168 1748.8 3687.7 amro
176 1634.7 3744.7 amro
210 1444.7 4162.9 amro
225 1798.4 3831.4 amro
238 1653.7 3592.6 amro
250 1615.7 3687.7 amro
267 1563.1 4230.8 amro

(continues on next page)
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(continued from previous page)

277 1646.5 4189.1 amro

=================================================================================================
powdermill_data/Annotation_Files_Standardized/Recording_4_Segment_01.Table.1.
→˓selections.txt.lower
=================================================================================================

selection view channel begin time (s) end time (s) \
188 189 spectrogram 1 1 247.263069 249.107387
201 202 spectrogram 1 1 263.512160 264.851933

low freq (hz) high freq (hz) species
188 1249.2 2419.2 amro
201 1229.4 2558.0 amro

6.3 Split Raven annotations and audio files

The Raven module’s raven_audio_split_and_save function enables splitting of both audio data and associ-
ated annotations. It requires that the annotation and audio filenames are unique, and that corresponding annotation and
audiofilenames are named the same filenames as each other.

[12]: audio_directory = Path('./powdermill_data/Recordings/')
destination = Path('./powdermill_data/Split_Recordings')
out = raven.raven_audio_split_and_save(

# Where to look for Raven files
raven_directory = raven_directory,

# Where to look for audio files
audio_directory = audio_directory,

# The destination to save clips and the labels CSV to
destination = destination,

# The column name of the labels
col = 'species',

# Desired audio sample rate
sample_rate = 22050,

# Desired duration of clips
clip_duration = 5,

# Verbose (uncomment the next line to see progress--this cell takes a while to
→˓run)

#verbose=True,
)

Found 77 sets of matching audio files and selection tables out of 77 audio files and
→˓77 selection tables

The results of the splitting are saved in the destination folder under the name labels.csv.
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[13]: labels = pd.read_csv(destination.joinpath("labels.csv"), index_col='filename')
labels.head()

[13]: amcr amgo amre amro \
filename
powdermill_data/Split_Recordings/Recording_4_Se... 1.0 0.0 0.0 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0

baor baww bbwa bcch \
filename
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0

bggn bhco ... rsha \
filename ...
powdermill_data/Split_Recordings/Recording_4_Se... 1.0 0.0 ... 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 1.0 0.0 ... 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 1.0 0.0 ... 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 1.0 0.0 ... 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 1.0 0.0 ... 0.0

rwbl scta swth tuti \
filename
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0

veer wbnu witu woth \
filename
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0 0.0 0.0 0.0

ybcu
filename
powdermill_data/Split_Recordings/Recording_4_Se... 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0
powdermill_data/Split_Recordings/Recording_4_Se... 0.0

[5 rows x 48 columns]

The raven_audio_split_and_save function contains several options. Notable options are: *
clip_duration: the length of the clips * clip_overlap: the overlap, in seconds, between clips *
final_clip: what to do with the final clip if it is not exactly clip_duration in length (see API docs for
more details) * labeled_clips_only: whether to only save labeled clips * min_label_length: minimum
length, in seconds, of an annotation for a clip to be considered labeled. For instance, if an annotation only overlaps 0.1s
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with a 5s clip, you might want to exclude it with min_label_length=0.2. * species: a subset of species to
search for labels of (by default, finds all species labels in dataset) * dry_run: if True, produces print statements and
returns dataframe of labels, but does not save files. * verbose: if True, prints more information, e.g. clip-by-clip
progress.

For instance, let’s extract labels for one species, American Redstart (AMRE) only saving clips that contain at least
0.5s of label for that species. The “verbose” flag causes the function to print progress splitting each clip.

[14]: btnw_split_dir = Path('./powdermill_data/btnw_recordings')
out = raven.raven_audio_split_and_save(

raven_directory = raven_directory,
audio_directory = audio_directory,
destination = btnw_split_dir,
col = 'species',
sample_rate = 22050,
clip_duration = 5,
clip_overlap = 0,
verbose=True,
species='amre',
labeled_clips_only=True,
min_label_len=1

)

Found 77 sets of matching audio files and selection tables out of 77 audio files and
→˓77 selection tables
Making directory powdermill_data/btnw_recordings
1. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_14.mp3
2. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_18.mp3
3. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_20.mp3
4. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_10.mp3
5. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_11.mp3
6. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_20.mp3
7. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_24.mp3
8. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_17.mp3
9. Finished powdermill_data/Recordings/Recording_2/Recording_2_Segment_08.mp3
10. Finished powdermill_data/Recordings/Recording_2/Recording_2_Segment_03.mp3
11. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_08.mp3
12. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_16.mp3
13. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_15.mp3
14. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_05.mp3
15. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_12.mp3
16. Finished powdermill_data/Recordings/Recording_2/Recording_2_Segment_12.mp3
17. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_05.mp3
18. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_32.mp3
19. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_24.mp3
20. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_33.mp3
21. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_23.mp3
22. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_06.mp3
23. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_10.mp3
24. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_03.mp3
25. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_19.mp3
26. Finished powdermill_data/Recordings/Recording_2/Recording_2_Segment_01.mp3
27. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_07.mp3
28. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_31.mp3
29. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_15.mp3
30. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_09.mp3
31. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_25.mp3
32. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_17.mp3

(continues on next page)
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33. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_23.mp3
34. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_09.mp3
35. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_14.mp3
36. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_26.mp3
37. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_30.mp3
38. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_34.mp3
39. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_04.mp3
40. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_02.mp3
41. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_01.mp3
42. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_21.mp3
43. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_11.mp3
44. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_18.mp3
45. Finished powdermill_data/Recordings/Recording_2/Recording_2_Segment_13.mp3
46. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_03.mp3
47. Finished powdermill_data/Recordings/Recording_2/Recording_2_Segment_05.mp3
48. Finished powdermill_data/Recordings/Recording_2/Recording_2_Segment_04.mp3
49. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_29.mp3
50. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_01.mp3
51. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_21.mp3
52. Finished powdermill_data/Recordings/Recording_3/Recording_3_Segment_01.mp3
53. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_27.mp3
54. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_13.mp3
55. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_12.mp3
56. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_22.mp3
57. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_02.mp3
58. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_16.mp3
59. Finished powdermill_data/Recordings/Recording_2/Recording_2_Segment_07.mp3
60. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_25.mp3
61. Finished powdermill_data/Recordings/Recording_2/Recording_2_Segment_14.mp3
62. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_28.mp3
63. Finished powdermill_data/Recordings/Recording_2/Recording_2_Segment_11.mp3
64. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_19.mp3
65. Finished powdermill_data/Recordings/Recording_2/Recording_2_Segment_06.mp3
66. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_06.mp3
67. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_08.mp3
68. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_35.mp3
69. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_07.mp3
70. Finished powdermill_data/Recordings/Recording_2/Recording_2_Segment_02.mp3
71. Finished powdermill_data/Recordings/Recording_2/Recording_2_Segment_09.mp3
72. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_13.mp3
73. Finished powdermill_data/Recordings/Recording_2/Recording_2_Segment_10.mp3
74. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_36.mp3
75. Finished powdermill_data/Recordings/Recording_1/Recording_1_Segment_04.mp3
76. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_22.mp3
77. Finished powdermill_data/Recordings/Recording_4/Recording_4_Segment_26.mp3

The labels CSV only has a column for the species of interest:

[15]: btnw_labels = pd.read_csv(btnw_split_dir.joinpath("labels.csv"), index_col='filename')
btnw_labels.head()

[15]: amre
filename
powdermill_data/btnw_recordings/Recording_2_Seg... 1.0
powdermill_data/btnw_recordings/Recording_2_Seg... 1.0
powdermill_data/btnw_recordings/Recording_2_Seg... 1.0
powdermill_data/btnw_recordings/Recording_2_Seg... 1.0

(continues on next page)
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(continued from previous page)

powdermill_data/btnw_recordings/Recording_2_Seg... 1.0

The split files and associated labels csv can now be used to train machine learning models (see additional tutorials).

The command below cleans up after the tutorial is done – only run it if you want to delete all of the files.

[16]: from shutil import rmtree
for file in files_to_delete:

if file.is_dir():
rmtree(file)

else:
file.unlink()
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CHAPTER 7

Machine learning: training

Biologists are increasingly using acoustic recorders to study species of interest. Many bioacousticians want to deter-
mine the identity of the sounds they have recorded; a variety of manual and automated methods exist for this purpose.
Automated methods can make it easier and faster to quickly predict which species or sounds are in one’s recordings.

Using a process called machine learning, bioacousticians can create (or “train”) algorithms that can predict the identi-
ties of species vocalizing in acoustic recordings. These algorithms, called classifiers, typically do not identify sounds
using the recording alone. Instead, they use image recognition techniques to identify sounds in spectrograms created
from short segments of audio.

This tutorial will guide you through the process of training a simple classifier for a single species. To download the
tutorial as a Jupyter Notebook and run it on your own computer, click the “Edit on GitHub” button at the top right of
the tutorial. You will have to install OpenSoundscape to use the tutorial.

First, use the following packages to create a machine learning classifier. First, from OpenSoundscape import the fol-
lowing three functions (run_command, binary_train_valid_split, and train) and three classes (Audio,
Spectrogram, and SingleTargetAudioDataset).

[1]: from opensoundscape.audio import Audio
from opensoundscape.spectrogram import Spectrogram
from opensoundscape.datasets import SingleTargetAudioDataset

from opensoundscape.helpers import run_command
from opensoundscape.data_selection import train_valid_split
from opensoundscape.torch.train import train

Import the following machine learning-related modules. OpenSoundscape uses PyTorch to do machine learning.

[2]: import torch
import torch.nn
import torch.optim
import torchvision.models

Lastly, use a few miscellaneous functions.
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[3]: # For interacting with paths on the filesystem
import os.path
from pathlib import Path

# For working with dataframes, arrays, and plotting
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

# For handling output of the training function
import io
from contextlib import redirect_stdout

7.1 Prepare audio data

7.1.1 Download labeled audio files

Training a machine learning model requires some pre-labeled data. These data, in the form of audio recordings or
spectrograms, are labeled with whether or not they contain the sound of the species of interest. These data can be
obtained from online databases such as Xeno-Canto.org, or by labeling one’s own ARU data using a program like
Cornell’s “Raven” sound analysis software.

The Kitzes Lab has created a small labeled dataset of short clips of American Woodcock vocalizations. You have two
options for obtaining the folder of data, called woodcock_labeled_data:

1. Run the following cell to download this small dataset. These commands require you to have curl and tar
installed on your computer, as they will download and unzip a compressed file in .tar.gz format.

2. Download a .zip version of the files by clicking here. You will have to unzip this folder and place the unzipped
folder in the same folder that this notebook is in.

[4]: commands = [
"curl -L https://pitt.box.com/shared/static/79fi7d715dulcldsy6uogz02rsn5uesd.gz -

→˓o ./woodcock_labeled_data.tar.gz",
"tar -xzf woodcock_labeled_data.tar.gz", # Unzip the downloaded tar.gz file
"rm woodcock_labeled_data.tar.gz" # Remove the file after its contents are

→˓unzipped
]
for command in commands:

run_command(command)

7.1.2 Inspect the data

The folder contains 2s long audio clips taken from an autonomous recording unit. It also contains a file
woodcock_labels.csv which contains the names of each file and its corresponding label information, created
using a program called Specky.

Look at the contents of woodcock_labels.csv. First, load them into a pandas DataFrame called labels. Use
labels.shape to see how many audio files there are.

[5]: labels = pd.read_csv(Path("woodcock_labeled_data/woodcock_labels.csv"))
labels.shape
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[5]: (29, 3)

The above call to labels.shape showed that there were 29 rows and 3 columns in the loaded dataframe. Look at
the head() of this dataframe to see the first 5 rows of its contents.

[6]: labels.head()

[6]: filename woodcock sound_type
0 d4c40b6066b489518f8da83af1ee4984.wav present song
1 e84a4b60a4f2d049d73162ee99a7ead8.wav absent na
2 79678c979ebb880d5ed6d56f26ba69ff.wav present song
3 49890077267b569e142440fa39b3041c.wav present song
4 0c453a87185d8c7ce05c5c5ac5d525dc.wav present song

Before splitting this dataframe into training and validation sets, prepend the name of the folder in front of the filename.
This allows our computer program to find these files on the filesystem during the training process.

[7]: labels['filename'] = 'woodcock_labeled_data' + os.path.sep + labels['filename'].
→˓astype(str)
labels.head()

[7]: filename woodcock sound_type
0 woodcock_labeled_data/d4c40b6066b489518f8da83a... present song
1 woodcock_labeled_data/e84a4b60a4f2d049d73162ee... absent na
2 woodcock_labeled_data/79678c979ebb880d5ed6d56f... present song
3 woodcock_labeled_data/49890077267b569e142440fa... present song
4 woodcock_labeled_data/0c453a87185d8c7ce05c5c5a... present song

Now, use OpenSoundscape’s Spectrogram and Audio classes to take a look at these files. For more information
on the use of these classes, see the tutorial.

The first row in the labels dataframe contains a file with the following labels: the American Woodcock is present
("woodcock" = "present" and it makes a “song” in the recording ("sound_type" = "song"). Get the
filename for this recording.

[8]: filename0 = labels.iloc[0]['filename']

Create a spectrogram from this file. The high-contrast signal of an American Woodcock display sound (“peent”) is
visible about 0.6 seconds into the recording.

[9]: spect = Spectrogram.from_audio(Audio.from_file(filename0))
spect.plot()
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The second file, which is marked as not having a woodcock in it ("woodcock" = "absent"), has no such signal:

[10]: filename1 = labels.iloc[1]['filename']
spect = Spectrogram.from_audio(Audio.from_file(filename1))
spect.plot()

Farther below in the dataset, there are recordings labeled to contain only the “call” of a woodcock. First, list these
recordings:

[11]: labels[labels["sound_type"] == "call"]

[11]: filename woodcock sound_type
8 woodcock_labeled_data/f87d427bef752f5accbd8990... present call
22 woodcock_labeled_data/c057a4486b25cd638850fc07... present call

In reality, the “call” designation means that the woodcock only makes a short, soft, and low introductory sound, instead
of the full “peent.” Make a spectrogram of one of them to see the difference.

[12]: filename22 = labels.iloc[22]['filename']
spect = Spectrogram.from_audio(Audio.from_file(filename22))
spect.plot()
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The low sound of the introductory note appears around 1000 kHz at about 1.6 seconds into the recording. Compared
to the spectrogram above containing the song, this introductory note is similar to the note that comes before the loud
“peent.” Although in some applications the user might want to identify this call, it is probably better to mark these as
“absences.” The following code creates a new column just to identify whether or not the peent is present:

[13]: labels['woodcock_song'] = np.where(labels['sound_type']=='song', 'present', 'absent')
labels

[13]: filename woodcock sound_type \
0 woodcock_labeled_data/d4c40b6066b489518f8da83a... present song
1 woodcock_labeled_data/e84a4b60a4f2d049d73162ee... absent na
2 woodcock_labeled_data/79678c979ebb880d5ed6d56f... present song
3 woodcock_labeled_data/49890077267b569e142440fa... present song
4 woodcock_labeled_data/0c453a87185d8c7ce05c5c5a... present song
5 woodcock_labeled_data/0fc107ec5e76bf7a98dd207a... absent na
6 woodcock_labeled_data/50b6b7c7e843597e0dbc6986... present song
7 woodcock_labeled_data/35ca80c22127c3c0ae032a08... absent na
8 woodcock_labeled_data/f87d427bef752f5accbd8990... present call
9 woodcock_labeled_data/0ab7732b506105717708ea95... present song
10 woodcock_labeled_data/ad90eefb6196ca83f9cf43b6... present song
11 woodcock_labeled_data/cd0b8d8a89321046e96abee2... absent na
12 woodcock_labeled_data/24073ce519bf1d24107da8a9... present song
13 woodcock_labeled_data/863095c237c52ec51cff7395... present song
14 woodcock_labeled_data/882de25226ed989b31274eea... present song
15 woodcock_labeled_data/6a83b011665c482c1f260d8e... absent na
16 woodcock_labeled_data/45c4b1ed3d7d0acc27125579... present song
17 woodcock_labeled_data/4bb7dbc13db479e8b5769dd9... present song
18 woodcock_labeled_data/75b2f63e032dbd6d19790049... present song
19 woodcock_labeled_data/4afa902e823095e03ba23ebc... present song
20 woodcock_labeled_data/01c5d0c90bd4652f308fd9c7... present song
21 woodcock_labeled_data/92647ab903049a9ee4125abd... present song
22 woodcock_labeled_data/c057a4486b25cd638850fc07... present call
23 woodcock_labeled_data/e9e7153d11de3ac8fc3f7164... present song
24 woodcock_labeled_data/724d8e61b678a6a897b47ed6... absent na
25 woodcock_labeled_data/ad14ac7ffa729060712b442e... absent na
26 woodcock_labeled_data/0d043e9954d9d80ca2c3e860... present song
27 woodcock_labeled_data/78654b6f687d7635f50fba35... present song
28 woodcock_labeled_data/ec0bd96aee95f03b47628b9c... present song

(continues on next page)
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(continued from previous page)

woodcock_song
0 present
1 absent
2 present
3 present
4 present
5 absent
6 present
7 absent
8 absent
9 present
10 present
11 absent
12 present
13 present
14 present
15 absent
16 present
17 present
18 present
19 present
20 present
21 present
22 absent
23 present
24 absent
25 absent
26 present
27 present
28 present

7.1.3 Create numeric labels

Although the labels are currently “present” and “absent,” the library used for machine learning requires numeric labels,
not string labels. So, use the following code to transform the “present” and “absent” labels into 0s and 1s. First, define
a mapping from the string labels to the numeric labels:

[14]: stringlabel_to_numbericlabel = {"absent":0, "present":1}

Next, create a new column of numeric labels:

[15]: labels["numeric_labels"] = labels["woodcock_song"].apply(lambda x: stringlabel_to_
→˓numbericlabel[x])
labels.head()

[15]: filename woodcock sound_type \
0 woodcock_labeled_data/d4c40b6066b489518f8da83a... present song
1 woodcock_labeled_data/e84a4b60a4f2d049d73162ee... absent na
2 woodcock_labeled_data/79678c979ebb880d5ed6d56f... present song
3 woodcock_labeled_data/49890077267b569e142440fa... present song
4 woodcock_labeled_data/0c453a87185d8c7ce05c5c5a... present song

woodcock_song numeric_labels
0 present 1

(continues on next page)
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1 absent 0
2 present 1
3 present 1
4 present 1

Now drop the unnecessary columns of this dataset, leaving just the "filename" and the "numeric_labels"
columns required to train a machine learning algorithm.

[16]: labels = labels[["filename", "numeric_labels"]]
labels.head()

[16]: filename numeric_labels
0 woodcock_labeled_data/d4c40b6066b489518f8da83a... 1
1 woodcock_labeled_data/e84a4b60a4f2d049d73162ee... 0
2 woodcock_labeled_data/79678c979ebb880d5ed6d56f... 1
3 woodcock_labeled_data/49890077267b569e142440fa... 1
4 woodcock_labeled_data/0c453a87185d8c7ce05c5c5a... 1

In order to make it easier for future users to interpret the model results, save a dictionary that associates each numeric
label with an explanatory string variable. In this case, mark the 0-labeled recordings "scolopax-minor-absent
" and the 1-labeled recordings "scolopax-minor-present". That way, as long as the model is bundled with
this metadata, it will be easy to see that the 1 prediction corresponds to American Woodcock (scientific name Scolopax
minor).

[17]: label_dict = {0:'scolopax-minor-absent', 1:'scolopax-minor-present'}

7.2 Create machine learning datasets

7.2.1 Training-validation split

Next, to use machine learning on these files, they must be separated into two datasets. The “training” dataset will
be used to teach the machine learning algorithm. The “validation” dataset will be used to evaluate the algorithm’s
performance each epoch. The process of separating the data into multiple datasets is often known in machine learning
as creating a “split.”

Typically, machine learning practitioners use a separate validation set to check on the model’s performance during and
after training. While the training data are used to teach the model how to identify its focal species, the validation data
are not used to teach the model. Instead, they are held out as a separate comparison. This allows us to check how well
the model generalizes to data it has never seen before. A model that performs well on the training set, but very poorly
on the validation set, is said to be overfit. Overfit models are great at identifying the original recordings they saw, but
are often not useful for real applications.

First, look at the dataframe again.

[18]: labels.head()

[18]: filename numeric_labels
0 woodcock_labeled_data/d4c40b6066b489518f8da83a... 1
1 woodcock_labeled_data/e84a4b60a4f2d049d73162ee... 0
2 woodcock_labeled_data/79678c979ebb880d5ed6d56f... 1
3 woodcock_labeled_data/49890077267b569e142440fa... 1
4 woodcock_labeled_data/0c453a87185d8c7ce05c5c5a... 1

It’s often desirable to make a stratified split. This means that the percentage of samples in the original dataset that
have each label, will be roughly equal to the percentage of each label in the training and validation datasets. So, for
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instance, if half of the recordings in the original dataframe had the species present, in a stratified split, half of the
recordings in the training dataframe and in the validation dataframe would have the species present.

Use a scikit-learn function to do this, specifying the "numeric_labels" column as the one to stratify over.

[19]: train_df, valid_df = train_test_split(labels, train_size=0.8, stratify=labels[
→˓'numeric_labels'])

Check that the dataframes are stratified correctly. Compare the fraction of positives in the original dataset with the
fraction of positives in the training and validation subsets.

[20]: num_samples = labels.shape[0]
num_present = sum(labels['numeric_labels'] == 1)
print(f"Fraction of original dataframe with woodcock present: {num_present/num_
→˓samples:.2f}")

Fraction of original dataframe with woodcock present: 0.69

[21]: num_train_samples = train_df.shape[0]
num_train_present = sum(train_df['numeric_labels'] == 1)
print(f"Fraction of train samples with woodcock present: {num_train_present/num_train_
→˓samples:.2f}")

Fraction of train samples with woodcock present: 0.70

[22]: num_valid_samples = valid_df.shape[0]
num_valid_present = sum(valid_df['numeric_labels'] == 1)
print(f"Fraction of train samples with woodcock present: {num_valid_present/num_valid_
→˓samples:.2f}")

Fraction of train samples with woodcock present: 0.67

So, the fraction is very close, though not exact–owing to the difference in size of these two datasets. This is not
unexpected.

7.2.2 Format as SingleTargetAudioDatasets

Turn these dataframes into “Datasets” using the SingleTargetAudioDataset class. Once they are set up in
this class, they can be used by the training algorithm. Data augmentation could be applied in this step, but is not
demonstrated here; for more information, see the relevant API documentation.

To use this class, specify the names of the relevant columns in the dataframes:

[23]: train_dataset = SingleTargetAudioDataset(
df=train_df, label_dict=label_dict, label_column='numeric_labels', filename_

→˓column='filename')
valid_dataset = SingleTargetAudioDataset(

df=valid_df, label_dict=label_dict, label_column='numeric_labels', filename_
→˓column='filename')

7.3 Train the machine learning model

Next, set up the architecture of the machine learning model and train it.
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7.3.1 Set up model architecture

The model architecture is a neural network. Neural networks are so-named for their loose similarity to neurons. Each
neuron takes in a small amount of data, performs a transformation to the data, and passes it on with some weight to
the next neuron. Neurons are usually organized in layers; each neuron in one layer can be connected to one or multiple
neurons in the next layer. Complex structures can arise from this series of connections.

The neural network used here is a combination of a feature extractor and a classifier. The feature extractor is a
convolutional neural network (CNN). CNNs are a special class of neural network commonly used for image classifica-
tion. They are able to interpret pixels that are near each other to identify shapes or textures in images, like lines, dots,
and edges. During the training process, the CNN learns which shapes and textures are important for distinguishing
between different classes.

The specific CNN used here is resnet18, using the pretrained=True option. This means that the model
loaded is a version that somebody has already trained on another image dataset called ImageNet, so it has a head start
on understanding features commonly seen in images. Although spectrograms aren’t the same type of images as the
photographs used in ImageNet, using the pretrained model will allow the model to more quickly adapt to identifying
spectrograms.

[24]: model = torchvision.models.resnet18(pretrained = True)

Although we refer to the whole neural network as a classifier, the part of the neural network that actually does the
species classification is its fc, or “fully connected,” layers. This part of the neural network is called “fully connected”
because it consists of several layers of neurons, where every neuron in each layer is connected to every other neuron
in its adjacent layers.

These layers come after the CNN layers, which have already interpreted an image’s features. The fc layers then use
those interpretations to classify the image. The number of output features of the CNN, therefore, is the number of
input features of the fc layers:

[25]: model.fc.in_features

[25]: 512

Use a Linear classifier for the fc. To set up the Linear classifier, identify the input and output size for this
classifier. As described above, the fc takes in the outputs of the feature extractor, so in_features = model.fc.
in_features. The model identifies one species, so it has to be able to output a “present” or “absent” classification.
Thus, out_features=2. A multi-species model would use out_features=number_of_species.

[26]: model.fc = torch.nn.Linear(in_features = model.fc.in_features, out_features = 2)

7.3.2 Train the model

Next, create set up a directory in which to save results.

[27]: results_path = Path('model_train_results')
if not results_path.exists(): results_path.mkdir()

The scikit-learn function may throw errors when calculating metrics; the following code will silence them.

[28]: def warn(*args, **kwargs):
pass

import warnings
warnings.warn = warn
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Finally, run the model training with the following parameters: * save_dir: the directory in which to save results
(which is created if it doesn’t exist) * model: the model set up in the previous cell * train_dataset: the train-
ing dataset created using SingleTargetAudioDataset * optimizer: the optimizer to use for training the
algorithm * loss_fn: the loss function used to assess the algorithm’s performance during training * epochs: the
number of times the model will run through the training data * log_every: how frequently to save performance
data and save intermediate machine learning weights (log_every=1 will save every epoch)

The train function allows the user to control more parameters, but they are not demonstrated here. For more
information, see the train API.

[30]: train_outputs = io.StringIO()
with redirect_stdout(train_outputs):

train(
save_dir = results_path,
model = model,
train_dataset = train_dataset,
valid_dataset = valid_dataset,
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3),
loss_fn = torch.nn.CrossEntropyLoss(),
epochs=10,
log_every=1,
print_logging=True,

)

/Users/tessa/Code/opensoundscape/opensoundscape/metrics.py:104: RuntimeWarning:
→˓invalid value encountered in true_divide
precisions[idx] = float(true_positives) / (true_positives + false_positives)

/Users/tessa/Code/opensoundscape/opensoundscape/metrics.py:104: RuntimeWarning:
→˓invalid value encountered in true_divide
precisions[idx] = float(true_positives) / (true_positives + false_positives)

/Users/tessa/Code/opensoundscape/opensoundscape/metrics.py:104: RuntimeWarning:
→˓invalid value encountered in true_divide
precisions[idx] = float(true_positives) / (true_positives + false_positives)

/Users/tessa/Code/opensoundscape/opensoundscape/metrics.py:104: RuntimeWarning:
→˓invalid value encountered in true_divide
precisions[idx] = float(true_positives) / (true_positives + false_positives)

/Users/tessa/Code/opensoundscape/opensoundscape/metrics.py:104: RuntimeWarning:
→˓invalid value encountered in true_divide
precisions[idx] = float(true_positives) / (true_positives + false_positives)

/Users/tessa/Code/opensoundscape/opensoundscape/metrics.py:104: RuntimeWarning:
→˓invalid value encountered in true_divide
precisions[idx] = float(true_positives) / (true_positives + false_positives)

/Users/tessa/Code/opensoundscape/opensoundscape/metrics.py:104: RuntimeWarning:
→˓invalid value encountered in true_divide
precisions[idx] = float(true_positives) / (true_positives + false_positives)

The errors produced above are due to there being both no true positives and no false positives in some steps of the
training (either training or validation). They’re a symptom of the small size of the training and validation datasets.

7.4 Evaluate model performance

When training is complete, it is important to check the training results to see how well the model identifies sounds. This
model was only trained on a limited amount of data, so the model is expected to not be usable–it is for demonstration
purposes only.

The outputs of the training function were saved to train_outputs. Check out the first 100 characters of this
output.
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[31]: source_text = train_outputs.getvalue()
print(source_text[:100])

Epoch 0
Training.
Validating.
Validation results:
train_loss: 0.7173765981974809
train

These functions help to parse the log text. They simply extract the resulting “metric” in each epoch. Metrics include
accuracy, precision, recall, and f1 score.

[32]: def extract_all_lines_containing(source_text, str_to_extract):
"""Case-sensitive search for lines containing str_to_extract"""
finished = False
lines = source_text.split('\n')
extract_lines = [line for line in lines if str_to_extract in line]
return extract_lines

def strip_log(log, sep=': '):
return log.split(sep)[1].strip('[,]')

def get_metric_from_log(source_text, metric):
all_lines_from_metric = extract_all_lines_containing(source_text, metric)
if 'precision' in metric or 'recall' in metric:

return [float(strip_log(line, sep=': ').strip('[]').split()[1]) for line in
→˓all_lines_from_metric]

return [float(strip_log(line, sep=None)) for line in all_lines_from_metric]

Plot the validation accuracy each epoch. These results will look different every time the model is trained, as it is a
stochastic process.

[33]: metrics_to_plot = ['valid_accuracy', 'train_accuracy']
fig, ax = plt.subplots(1, 1)
for metric in metrics_to_plot:

results = get_metric_from_log(source_text, metric)
ax.scatter(range(len(results)), results)

ax.set_ylim(0, 1)
ax.set_title('model training results')
ax.legend(metrics_to_plot)
plt.show()
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Lastly, this command “cleans up” by deleting all the downloaded files and results. Only run this if you are ready to
remove the results of this analysis.

[34]: import shutil
# Delete downloads
shutil.rmtree(Path("woodcock_labeled_data"))
# Delete results
shutil.rmtree(results_path)

42 Chapter 7. Machine learning: training



CHAPTER 8

Machine learning: prediction

Machine learning-trained algorithms can predict whether bioacoustic recordings contain a sound of interest. For
instance, an algorithm trained how to detect the sound of a Wood Thrush can be used to predict where Wood Thrushes
vocalize in a set of autonomous recordings.

The Kitzes Lab, the developers of OpenSoundscape, pre-trained a series of baseline machine learning models that can
be used to predict the presence of 485 species of common North American birds. These are “beta” models; if you are
interested in using them for research, please contact us at the Kitzes Lab. Information about the training process is
available at this README.

This tutorial downloads an example model and demonstrates how to use it to predict the identity of birds in recordings.
To download the tutorial as a Jupyter Notebook, click the “Edit on GitHub” button at the top right of the tutorial. To
run the Jupyter Notebook tutorial, follow these instructions to install OpenSoundscape and add the OpenSoundscape
environment to your Jupyter kernels.

8.1 Import modules

Import the following modules to run a pre-trained machine learning learning classifier. First, from OpenSoundscape
we will need two classes (Audio and SingleTargetAudioDataset) and three functions (run_command,
lowercase_annotations, and predict).

[1]: from opensoundscape.audio import Audio, split_and_save
from opensoundscape.datasets import SingleTargetAudioDataset
from opensoundscape.helpers import run_command
from opensoundscape.raven import lowercase_annotations
from opensoundscape.torch.predict import predict

Import the following machine learning-related modules. OpenSoundscape uses PyTorch to do machine learning.

[2]: import torch
import torch.nn
import torchvision.models

(continues on next page)
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(continued from previous page)

import torch.utils.data
import torchvision.transforms

Lastly, use a few miscellaneous functions.

[3]: import yaml
import os.path
import pandas as pd
from pathlib import Path
from math import floor
import matplotlib.pyplot as plt

8.2 Download model

To use the model, it must be downloaded onto your computer and loaded with the same specifications it was created
with.

Download the example model for Wood Thrush, Hylocichla mustelina. First, create a folder called
"prediction_example" to store the model and its data in.

[4]: folder_name = "prediction_example"
folder_path = Path(folder_name)
if not folder_path.exists(): folder_path.mkdir()

Next, download the model from the Box storage site using the following lines.

If you prefer, you can also download the model directly off of the shared folder (see introduction para-
graphs). Make sure to move it into the "prediction_example" folder and ensure that it is named
"hylocichla-mustelina.tar". These instructions can be modified for any of the species included in the
pre-trained set of models.

[5]: def download_from_box(link, name):
run_command(f"curl -L {link} -o ./{name}")

This link format enables direct download.

[6]: link_to_model = "https://pitt.box.com/shared/static/0xl7aqjlhdrx83am7k4w0e72fsg08dey.
→˓tar"

Now, use the function created above to download the model file.

[7]: model_filename = folder_path.joinpath("hylocichla-mustelina.tar")
download_from_box(

link=link_to_model,
name=model_filename,

)

Make sure that the model was downloaded correctly.

[8]: assert(model_filename.exists())
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8.3 Load model

At its core, a machine learning model consists of two things: its architecture and its weights.

8.3.1 Create architecture

The architecture is the complex structure of the model, which in this case, is a convolutional neural network. Con-
volutional neural networks are a particular set of algorithms especially suited to extracting and interpreting features
from images, such as combinations of lines, dots, and edges. In this case, we use a resnet18 convolutional neural
network. After feature extraction, the convolutional neural network’s features are passed to a classifier. The classi-
fier decides how to weight each feature in predicting the final class identity. The model was trained with a Linear
classifier.

Create the architecture of the model. First, designate the model as a resnet18 CNN.

[9]: model = torchvision.models.resnet18(pretrained=False)

Then, add the fc layers. “FC” stands for “fully connected”. To set up the proper architecture, we need to specify the
correct number of input features, output features, and classifier type.

The number of input features to the FC is equal to the number of features extracted from the convolutional neural
network and passed to the the FC layer: model.fc.in_features

[10]: num_cnn_features = model.fc.in_features

The models were trained to predict two classes (species present and species absent), so the number of output features
of the FC layer is 2.

[11]: num_classes = 2

Finally, the classifier type is a torch.nn.Linear classifier.

[12]: model.fc = torch.nn.Linear(
in_features = num_cnn_features,
out_features = num_classes)

8.3.2 Load weights and metadata

The weights of the model are distinguished from its architecture because, while the architecture is decided by humans,
the weights of the architecture are learned during the machine learning process.

When downloading the machine learning model, you downloaded a compressed file that contains the weights and
some metadata about the model. First, inspect what you downloaded using torch.load to extract the compressed
.tar model file.

[13]: model_and_metadata = torch.load(model_filename)

Inspect metadata

The variable model_and_metadata is a dictionary. The keys of the dictionary that we can use to access the model
information are:
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[14]: model_and_metadata.keys()

[14]: dict_keys(['train_loss', 'train_accuracy', 'train_precision', 'train_recall', 'train_
→˓f1', 'train_confusion_matrix', 'valid_accuracy', 'valid_precision', 'valid_recall',
→˓'valid_f1', 'valid_confusion_matrix', 'model_state_dict', 'optimizer_state_dict',
→˓'labels_yaml', 'train_scores', 'train_targets', 'valid_scores', 'valid_targets'])

Some of the metadata included in the model is information about the model’s performance during training. A full
description of what each of these keys means is given in the download folder (see introduction).

For instance, the machine learning model is trained using a set of recordings where the species is known to be present,
and a set where the species is known to be absent. These files are divided into two sets: a “training” set, which
the model directly learns from, and a “validation” set, which the model does not learn from but we use to check the
model’s performance as it trains.

The model outputs a score for each file. We want the model’s scores for the species-present files to be lower than those
for the species-absent files. We can inspect the dictionary’s valid_targets and valid_scores attributes,
which respectively give a 1 or a 0 based on whether a training file included the species or did not; and a real number
score for that file.

First, extract the validation score:

[15]: validation_scores = pd.DataFrame(model_and_metadata['valid_scores'])
validation_true_targets = pd.Series(model_and_metadata['valid_targets'])

Then, separate the scores for the species-present files and the species-absent files:

[16]: true_absent_scores = validation_scores[validation_true_targets == 0][1]
true_present_scores = validation_scores[validation_true_targets == 1][1]

Finally, plot a histogram of the scores for the two file types:

[17]: plt.hist(true_absent_scores, alpha=0.5, label='Species absent')
plt.hist(true_present_scores, alpha=0.5, label='Species present')
plt.legend()
plt.xlabel('Machine learning score')
plt.ylabel('Number of files')
plt.show()

This model performs fairly well at differentiating the validation files, which are segments of Xeno-Canto recordings.
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Note: this doesn’t mean the model will perform similarly well on ARU recordings!

Load weights onto architecture

To use the model itself, access the dictionary’s 'model_state_dict' attribute:

[18]: weights = model_and_metadata['model_state_dict']

Now, apply these weights to the model architecture created above.

[19]: model.load_state_dict(weights)

[19]: <All keys matched successfully>

8.4 Prepare prediction files

To actually use the model, we need to download and prepare a set of recordings. The model was trained to make
predictions on spectrograms made from 5 second-long recordings, so we will have to split the recordings up and
transform them into spectrograms.

As example data, we have provided a 1 minute-long soundscape which contains Wood Thrush vocalizations.

The following code downloads this audio file into the "prediction_example" folder created above. If you
prefer, you can also download this file at this link. Make sure to move it into the "prediction_example" folder
and ensure that it is named "1min.wav".

[20]: data_filename = folder_path.joinpath("1minexamplefile.wav")
download_from_box(

link = "https://pitt.box.com/shared/static/z73eked7quh1t2pp93axzrrpq6wwydx0.wav",
name = data_filename

)

The example soundscape must be split up into soundscapes of the same size as the ones the model was trained on. In
this case, the soundscapes should be 5s long.

First, create a directory in which to save split files.

[21]: split_directory = folder_path.joinpath("split_files")
if not split_directory.exists(): split_directory.mkdir()

Next, load the 1-minute long file as an Audio object.

[22]: base_file = Audio.from_file(data_filename)

To split base_file into 5s long segments, use the split_and_save method of opensoundscape.Audio.
The argument final_clip=None only makes a difference if the source audio didn’t have a length divisible by 5s,
by removing the remainder clip so that we are only left with 5s long clips. For more information on the behavior of
this argument, see the API Documentation.

[23]: clips = split_and_save(
audio = base_file,
destination = split_directory.absolute(),
prefix = data_filename.stem,
clip_duration = 5,
final_clip = None,

)
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The returned DataFrame has a column, 'filenames', containing the save location of all of the clips.

[24]: filenames = clips.index
filenames

[24]: Index(['/Users/tessa/Code/opensoundscape/docs/tutorials/prediction_example/split_
→˓files/1minexamplefile_0.0s_5.0s.wav',

'/Users/tessa/Code/opensoundscape/docs/tutorials/prediction_example/split_
→˓files/1minexamplefile_5.0s_10.0s.wav',

'/Users/tessa/Code/opensoundscape/docs/tutorials/prediction_example/split_
→˓files/1minexamplefile_10.0s_15.0s.wav',

'/Users/tessa/Code/opensoundscape/docs/tutorials/prediction_example/split_
→˓files/1minexamplefile_15.0s_20.0s.wav',

'/Users/tessa/Code/opensoundscape/docs/tutorials/prediction_example/split_
→˓files/1minexamplefile_20.0s_25.0s.wav',

'/Users/tessa/Code/opensoundscape/docs/tutorials/prediction_example/split_
→˓files/1minexamplefile_25.0s_30.0s.wav',

'/Users/tessa/Code/opensoundscape/docs/tutorials/prediction_example/split_
→˓files/1minexamplefile_30.0s_35.0s.wav',

'/Users/tessa/Code/opensoundscape/docs/tutorials/prediction_example/split_
→˓files/1minexamplefile_35.0s_40.0s.wav',

'/Users/tessa/Code/opensoundscape/docs/tutorials/prediction_example/split_
→˓files/1minexamplefile_40.0s_45.0s.wav',

'/Users/tessa/Code/opensoundscape/docs/tutorials/prediction_example/split_
→˓files/1minexamplefile_45.0s_50.0s.wav',

'/Users/tessa/Code/opensoundscape/docs/tutorials/prediction_example/split_
→˓files/1minexamplefile_50.0s_55.0s.wav',

'/Users/tessa/Code/opensoundscape/docs/tutorials/prediction_example/split_
→˓files/1minexamplefile_55.0s_60.0s.wav'],

dtype='object')

8.5 Create a Dataset

Now that the data are split, we can create a “dataset” from them using OpenSoundscape’s
SingleTargetAudioDataset. This structure takes in a DataFrame of filenames. It can be accessed
like a list of the same length as the DataFrame of filenames. When it is accessed, it takes the filename, loads the audio
at the filename, and transforms that audio into a spectrogram in the correct format to use for our machine learning
models.

This dataset, SingleTargetAudioDataset, is intended for models that predict the presence of a single target,
e.g., models that predict whether a single species is present in a file, like the model we are using. It can be used in
both training and prediction, and has many options for implementing image augmentation during training (see the API
Documentation). Just use the default options for prediction.

To create a dataset, first format the list of 5s clip filenames into a pandas DataFrame. Name the column containing
the filenames 'file_path'.

[25]: filename_column = 'file_path'
files_to_predict_on = pd.DataFrame(filenames, columns=[filename_column])

Additionally, the SingleTargetAudioDataset requires that we use a dictionary that associates numeric labels
with the class names: 1 is for predicting a Wood Thrush’s presence; 0 is for predicting a Wood Thrush’s absence. This
dictionary is packaged with the model under the key 'labels_yaml':

[26]: label_dict = yaml.safe_load(model_and_metadata['labels_yaml'])
label_dict
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[26]: {0: 'hylocichla-mustelina-absent', 1: 'hylocichla-mustelina-present'}

Now create the SingleTargetAudioDataset.

[27]: test_dataset = SingleTargetAudioDataset(
df=files_to_predict_on,
filename_column=filename_column,
label_dict=label_dict,

)

The test_dataset is a list of dictionaries. Each element of the list contains a dictionary for one of the files to
predict on.

[28]: len(test_dataset)

[28]: 12

Each dictionary in test_dataset has one or two keys. In all cases, the dictionary has a key 'X' which refers to
the spectrogram. If a dataset is created with true labels, the dictionary also has a 'y' key which links to the true label.
Because it is unknown which of these files contain Wood Thrush songs, no true labels were given when creating the
dataset.

The spectrogram itself is stored as a PyTorch tensor. For example, here is the tensor of the first spectrogram:

[29]: first_tensor = test_dataset[0]['X']
first_tensor

[29]: tensor([[[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
...,
[-0.2314, -0.1451, 0.1373, ..., -0.0902, -0.1373, -0.0902],
[-0.1529, -0.2157, 0.1922, ..., -0.1451, -0.1686, -0.0275],
[ 0.2784, 0.0275, 0.3647, ..., 0.0510, 0.1059, 0.3176]],

[[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
...,
[-0.2314, -0.1451, 0.1373, ..., -0.0902, -0.1373, -0.0902],
[-0.1529, -0.2157, 0.1922, ..., -0.1451, -0.1686, -0.0275],
[ 0.2784, 0.0275, 0.3647, ..., 0.0510, 0.1059, 0.3176]],

[[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
...,
[-0.2314, -0.1451, 0.1373, ..., -0.0902, -0.1373, -0.0902],
[-0.1529, -0.2157, 0.1922, ..., -0.1451, -0.1686, -0.0275],
[ 0.2784, 0.0275, 0.3647, ..., 0.0510, 0.1059, 0.3176]]])

To view this spectrogram, use PyTorch’s transforms.ToPILImage() function. This function returns a trans-
former. Call the transformer on the first tensor to display the spectrogram as an image.

[30]: transformer = torchvision.transforms.ToPILImage()
transformer(first_tensor)
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[30]:

8.6 Use model on prediction files

Finally, the model can be used for prediction. Use OpenSoundscape’s predict function to call the model on the test
dataset. The label_dict created above is used to make the classes interpretable; otherwise, the classes would just
be numbered.

[31]: prediction_df = predict(model, test_dataset, label_dict=label_dict, apply_
→˓softmax=True)
prediction_df

[31]: hylocichla-mustelina-absent \
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.006396
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.000336
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.000019
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.002727
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.013993
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.000270
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.000316
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.000100
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.000674
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.000062
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.001224
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.001092

hylocichla-mustelina-present
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.993604
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.999664
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.999981
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.997273
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.986007
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.999730
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.999684
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.999900
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.999326
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.999938
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.998776
/Users/tessa/Code/opensoundscape/docs/tutorials... 0.998908

Interpreting these scores is the challenging part of machine learning. One typical method is to empirically determine
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a score threshold below which the species is considered absent and present, and listen to a sample of recordings above
and below the threshold to determine the false positive and false negative rate of the threshold.

Note that the classifier usually performs worse on autonomous recording unit data than it does on the validation set.
In particular, the distributions of the species-present and species-absent values may have greater variance and may be
centered on different values, closer to each other than in the validation set (see histograms above).

Finally, this command “cleans up” by deleting all the downloaded files and results. Only run this if you are ready to
remove the results of this analysis.

[32]: import shutil
shutil.rmtree(folder_path)
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CHAPTER 9

RIBBIT Pulse Rate model demonstration

RIBBIT (Repeat-Interval Based Bioacoustic Identification Tool) is a tool for detecting vocalizations that have a re-
peating structure.

This tool is useful for detecting vocalizations of frogs, toads, and other animals that produce vocalizations with a
periodic structure. In this notebook, we demonstrate how to select model parameters for the Great Plains Toad, then
run the model on data to detect vocalizations.

This work is described in: * 2021 paper, “Automated detection of frog calls and choruses by pulse repetition rate” *
2020 poster, “Automatic Detection of Pulsed Vocalizations”

RIBBIT is also available as an R package.

This notebook demonstrates how to use the RIBBIT tool implemented in opensoundscape as opensoundscape.
ribbit.ribbit()

For help instaling OpenSoundscape, see the documentation

9.1 Import packages

[1]: # suppress warnings
import warnings
warnings.simplefilter('ignore')

#import packages
import numpy as np
from glob import glob
import pandas as pd
from matplotlib import pyplot as plt

#local imports from opensoundscape
from opensoundscape.audio import Audio
from opensoundscape.spectrogram import Spectrogram
from opensoundscape.ribbit import ribbit

(continues on next page)
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(continued from previous page)

# create big visuals
plt.rcParams['figure.figsize']=[15,8]

9.2 Download example audio

First, let’s download some example audio to work with.

You can run the cell below, OR visit this link to downlaod the data (whichever you find easier):

https://pitt.box.com/shared/static/0xclmulc4gy0obewtzbzyfnsczwgr9we.zip

If you download using the link above, first un-zip the folder (double-click on mac or right-click -> extract all on
Windows). Then, move the great_plains_toad_dataset folder to the same location on your computer as this
notebook. Then you can skip this cell:

[2]: from opensoundscape.helpers import run_command
#download files from box.com to the current directory
_ = run_command(f"curl -L https://pitt.box.com/shared/static/
→˓9mrxib85y1jmf1ybbjvbr0tv171iekvy.gz -o ./great_plains_toad_dataset.tar.gz")# | tar -
→˓xz -f")
_ = run_command(f"tar -xz -f great_plains_toad_dataset.tar.gz")

#this will print `0` if everything went correctly. If it prints 256 or another number,
→˓ something is wrong (try downloading from the link above)

now, you should have a folder in the same location as this notebook called great_plains_toad_dataset

if you had trouble accessing the data, you can try using your own audio files - just put them in a folder called
great_plains_toad_dataset in the same location as this notebook, and this notebook will load whatever
is in that folder

9.2.1 Load an audio file and create a spectrogram

[3]: audio_path = np.sort(glob('./great_plains_toad_dataset/*'))[0]

#load the audio file into an OpenSoundscape Audio object
audio = Audio.from_file(audio_path)

#trim the audio to the time from 0-3 seconds for a closer look
audio = audio.trim(0,3)

#create a Spectrogram object
spectrogram = Spectrogram.from_audio(audio)

9.2.2 Show the Great Plains Toad spectrogram as an image

A spectrogram is a visual representation of audio with frequency on the vertical axis, time on the horizontal axis, and
intensity represented by the color of the pixels

[4]: spectrogram.plot()
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/Users/tessa/opt/anaconda3/envs/opso_0.4.6/lib/python3.7/site-packages/ipykernel/
→˓ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_
→˓cell` automatically in the future. Please pass the result to `transformed_cell`
→˓argument and any exception that happen during thetransform in `preprocessing_exc_
→˓tuple` in IPython 7.17 and above.
and should_run_async(code)

9.3 Select model parameters

RIBBIT requires the user to select a set of parameters that describe the target vocalization. Here is some detailed
advice on how to use these parameters.

Signal Band: The signal band is the frequency range where RIBBIT looks for the target species. Based on the
spectrogram above, we can see that the Great Plains Toad vocalization has the strongest energy around 2000-2500 Hz,
so we will specify signal_band = [2000,2500]. It is best to pick a narrow signal band if possible, so that the
model focuses on a specific part of the spectrogram and has less potential to include erronious sounds.

Noise Bands: Optionally, users can specify other frequency ranges called noise bands. Sounds in the noise_bands
are subtracted from the signal_band. Noise bands help the model filter out erronious sounds from the recordings,
which could include confusion species, background noise, and popping/clicking of the microphone due to rain, wind,
or digital errors. It’s usually good to include one noise band for very low frequencies – this specifically eliminates
popping and clicking from being registered as a vocalization. It’s also good to specify noise bands that target con-
fusion species. Another approach is to specify two narrow noise_bands that are directly above and below the
signal_band.

Pulse Rate Range: This parameters specifies the minimum and maximum pulse rate (the number of pulses per second,
also known as pulse repetition rate) RIBBIT should look for to find the focal species. Looking at the spectrogram
above, we can see that the pulse rate of this Great Plains Toad vocalization is about 15 pulses per second. By looking
at other vocalizations in different environmental conditions, we notice that the pulse rate can be as slow as 10 pulses
per second or as fast as 20. So, we choose pulse_rate_range = [10, 20] meaning that RIBBIT should look
for pulses no slower than 10 pulses per second and no faster than 20 pulses per second.
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Window Length: This parameter tells the algorithm how many seconds of audio to analyze at one time. Generally,
you should choose a window_length that is similar to the length of the target species vocalization, or a little bit
longer. For very slowly pulsing vocalizations, choose a longer window so that at least 5 pulses can occur in one
window (0.5 pulses per second -> 10 second window). Typical values for window_length are 1 to 10 seconds.
Keep in mind that The Great Plains Toad has a vocalization that continues on for many seconds (or minutes!) so we
chose a 2-second window which will include plenty of pulses.

Plot: We can choose to show the power spectrum of pulse repetition rate for each window by setting plot=True.
The default is not to show these plots (plot=False).

[5]: # minimum and maximum rate of pulsing (pulses per second) to search for
pulse_rate_range = [10,20]

# look for a vocalization in the range of 1000-2000 Hz
signal_band = [2000,2500]

# subtract the amplitude signal from these frequency ranges
noise_bands = [ [0,200], [10000,10100]]

#divides the signal into segments this many seconds long, analyzes each independently
window_length = 2 #(seconds)

#if True, it will show the power spectrum plot for each audio segment
show_plots = True

9.4 Search for pulsing vocalizations with ribbit()

This function takes the parameters we chose above as arguments, performs the analysis, and returns two arrays: -
scores: the pulse rate score for each window - times: the start time in seconds of each window

The scores output by the function may be very low or very high. They do not represent a “confidence” or “probability”
from 0 to 1. Instead, the relative values of scores on a set of files should be considered: when RIBBIT detects the
target species, the scores will be significantly higher than when the species is not detected.

The file gpt0.wav has a Great Plains Toad vocalizing only at the beginning. Let’s analyze the file with RIBBIT and
look at the scores versus time.

[6]: #get the audio file path
audio_path = np.sort(glob('./great_plains_toad_dataset/*'))[0]

#make the spectrogram
spec = Spectrogram.from_audio(audio.from_file(audio_path))

#run RIBBIT
scores, times = ribbit(

spec,
pulse_rate_range=pulse_rate_range,
signal_band=signal_band,
window_len=window_length,
noise_bands=noise_bands,
plot=False)

#show the spectrogram
print('spectrogram of 10 second file with Great Plains Toad at the beginning')
spec.plot()

(continues on next page)
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(continued from previous page)

# plot the score vs time of each window
plt.scatter(times,scores)
plt.xlabel('window start time (sec)')
plt.ylabel('RIBBIT score')
plt.title('RIBBIT scores for 10 second file with Great Plains Toad at the beginning')

spectrogram of 10 second file with Great Plains Toad at the beginning

[6]: Text(0.5, 1.0, 'RIBBIT scores for 10 second file with Great Plains Toad at the
→˓beginning')
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as we hoped, RIBBIT outputs a high score during the vocalization (the window from 0-2 seconds) and a low score
when the frog is not vocalizing

9.5 Analyzing a set of files

[7]: # set up a dataframe for storing files' scores and labels
df = pd.DataFrame(index = glob('./great_plains_toad_dataset/*'),columns=['score',
→˓'label'])

# label is 1 if the file contains a Great Plains Toad vocalization, and 0 if it does
→˓not
df['label'] = [1 if 'gpt' in f else 0 for f in df.index]

# calculate RIBBIT scores
for path in df.index:

#make the spectrogram
spec = Spectrogram.from_audio(audio.from_file(path))

#run RIBBIT
scores, times = ribbit(

spec,
pulse_rate_range=pulse_rate_range,
signal_band=signal_band,
window_len=window_length,
noise_bands=noise_bands,
plot=False)

# use the maximum RIBBIT score from any window as the score for this file
# multiply the score by 10,000 to make it easier to read
df.at[path,'score'] = max(scores) * 10000

print("Files sorted by score, from highest to lowest:")
df.sort_values(by='score',ascending=False)

/Users/tessa/opt/anaconda3/envs/opso_0.4.6/lib/python3.7/site-packages/ipykernel/
→˓ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_
→˓cell` automatically in the future. Please pass the result to `transformed_cell`
→˓argument and any exception that happen during thetransform in `preprocessing_exc_
→˓tuple` in IPython 7.17 and above.
and should_run_async(code)

Files sorted by score, from highest to lowest:

[7]: score label
./great_plains_toad_dataset/gpt0.mp3 188.681233 1
./great_plains_toad_dataset/gpt3.mp3 27.355522 1
./great_plains_toad_dataset/negative3.mp3 21.268281 0
./great_plains_toad_dataset/negative5.mp3 17.663214 0
./great_plains_toad_dataset/negative8.mp3 16.936452 0
./great_plains_toad_dataset/pops2.mp3 14.115037 0
./great_plains_toad_dataset/gpt4.mp3 13.923912 1
./great_plains_toad_dataset/gpt2.mp3 13.799077 1
./great_plains_toad_dataset/negative1.mp3 9.517518 0
./great_plains_toad_dataset/pops1.mp3 8.946919 0
./great_plains_toad_dataset/negative9.mp3 8.659933 0
./great_plains_toad_dataset/negative4.mp3 7.905783 0

(continues on next page)
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(continued from previous page)

./great_plains_toad_dataset/negative7.mp3 7.726107 0

./great_plains_toad_dataset/gpt1.mp3 7.346534 1

./great_plains_toad_dataset/negative2.mp3 5.739785 0

./great_plains_toad_dataset/negative6.mp3 5.69147 0

./great_plains_toad_dataset/water.mp3 4.409431 0

./great_plains_toad_dataset/silent.mp3 0.866457 0

So, how good is RIBBIT at finding the Great Plains Toad?

We can see that the scores for all of the files with Great Plains Toad (gpt) score above 6 except gpt4.mp3 (which
contains only a very quiet and distant vocalization). All files that do not contain the Great Plains Toad score less than
2.5. So, RIBBIT is doing a good job separating Great Plains Toads vocalizations from other sounds!

Notably, noisy files like pops1.mp3 score low even though they have lots of periodic energy - our noise_bands
sucessfully rejected these files. Without using noise_bands, files like these would receive very high scores. Also,
some birds in “negatives” files that have periodic calls around the same pulsre rate as the Great Plains Toad received
low scores. This is also a result of choosing a tight signal_band and strategic noise_bands. You can try
adjusting or eliminating these bands to see their effect on the audio.

(HINT: elimintating the noise_bands will result in high scores for the “pops” files)

9.6 Detail view

Now, let’s look at one 10 second file and tell ribbit to plot the power spectral density for each window (plot=True).
This way, we can see if peaks are emerging at the expected pulse rates. Since our window_length is 2 seconds,
each of these plots represents 2 seconds of audio. The vertical lines on the power spectral density represent the lower
and upper pulse_rate_range limits.

In the file gpt0.mp3, the Great Plains Toad vocalizes for a couple seconds at the beginning, then stops. We expect to
see a peak in the power spectral density at 15 pulses/sec in the first 2 second window, and maybe a bit in the second,
but not later in the audio.

[8]: #create a spectrogram from the file, like above:
# 1. get audio file path
audio_path = np.sort(glob('./great_plains_toad_dataset/*'))[0]
# 2. make audio object and trim (this time 0-10 seconds)
audio = Audio.from_file(audio_path).trim(0,10)
# 3. make spectrogram
spectrogram = Spectrogram.from_audio(audio)

scores, times = ribbit(
spectrogram,
pulse_rate_range=pulse_rate_range,
signal_band=signal_band,
window_len=window_length,
noise_bands=noise_bands,
plot=show_plots)

window: 0.0000 sec to 1.9969 sec

/Users/tessa/opt/anaconda3/envs/opso_0.4.6/lib/python3.7/site-packages/ipykernel/
→˓ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_
→˓cell` automatically in the future. Please pass the result to `transformed_cell`
→˓argument and any exception that happen during thetransform in `preprocessing_exc_
→˓tuple` in IPython 7.17 and above.

(continues on next page)
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(continued from previous page)

and should_run_async(code)

window: 1.9969 sec to 3.9938 sec

window: 3.9938 sec to 5.9907 sec
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window: 5.9907 sec to 7.9877 sec

9.7 Time to experiment for yourself

Now that you know the basics of how to use RIBBIT, you can try using it on your own data. We recommend spending
some time looking at different recordings of your focal species before choosing parameters. Experiment with the noise
bands and window length, and get in touch if you have questions!
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Sam’s email: sam . lapp [at] pitt.edu

this cell will delete the folder great_plains_toad_dataset. Only run it if you wish delete that folder and the
example audio inside it.

[9]: _ = run_command('rm -r ./great_plains_toad_dataset/')
_ = run_command('rm ./great_plains_toad_dataset.tar.gz')

/Users/tessa/opt/anaconda3/envs/opso_0.4.6/lib/python3.7/site-packages/ipykernel/
→˓ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_
→˓cell` automatically in the future. Please pass the result to `transformed_cell`
→˓argument and any exception that happen during thetransform in `preprocessing_exc_
→˓tuple` in IPython 7.17 and above.
and should_run_async(code)
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CHAPTER 10

Annotations

10.1 Raven

raven.py: Utilities for dealing with Raven files

opensoundscape.raven.annotation_check(directory, col)
Check that rows of Raven annotations files contain class labels

Parameters

• directory – The path which contains Raven annotations file(s)

• col – Name of column containing annotations

Returns None

opensoundscape.raven.generate_class_corrections(directory, col)
Generate a CSV to specify any class overrides

Parameters

• directory – The path which contains lowercase Raven annotations file(s)

• col – Name of column containing annotations

Returns

A multiline string containing a CSV file with two columns raw and corrected

Return type csv (string)

opensoundscape.raven.generate_split_labels_file(directory, col, split_len_s, to-
tal_len_s=None, species=None,
out_csv=None)

Generate binary labels for a directory of Raven annotations

Given a directory of lowercase Raven annotations, splits the annotations into segments that can be used as labels
for machine learning programs that only take short segments.

Parameters

63



opensoundscape, Release 0.4.7

• directory – The path which contains lowercase Raven annotations file(s)

• col (str) – name of column in Raven file to look for annotations in

• split_len_s (int) – length of segments to break annotations into (e.g. for 5s: 5)

• total_len_s (float) – length of original files (e.g. for 5-minute file: 300). If not
provided, estimates length individually for each file based on end time of last annotation
[default: None]

• species (str, list, or None) – species or list of species annotations to look for
[default: None]

• out_csv (str) (optional) – None]

Returns

split file of the format filename, start_seg, end_seg, species1, species2, . . . , speciesN
orig/fname1, 0, 5, 0, 1, . . . , 1 orig/fname1, 5, 10, 0, 0, . . . , 1 orig/fname2, 0, 5, 1, 1,
. . . , 1 . . .

saves all_selections to out_csv if this is specified

Return type all_selections (pd.DataFrame)

opensoundscape.raven.get_labels_in_dataset(selections_files, col)
Get list of all labels in selections_files

Parameters

• selections_files (list) – list of Raven selections.txt files

• col (str) – the name of the column containing the labels

Returns a list of the unique values found in the label column of this dataset

opensoundscape.raven.lowercase_annotations(directory, out_dir=None)
Convert Raven annotation files to lowercase and save

Parameters

• directory – The path which contains Raven annotations file(s)

• out_dir – The path at which to save (default: save in directory, same location as annota-
tions) [default: None]

Returns None

opensoundscape.raven.query_annotations(directory, cls, col, print_out=False)
Given a directory of Raven annotations, query for a specific class

Parameters

• directory – The path which contains lowercase Raven annotations file(s)

• cls – The class which you would like to query for

• col – Name of column containing annotations

• print_out –

Format of output. If True, output contains delimiters. If False, returns output

[default: False]

Returns A multiline string containing annotation file and rows matching the query cls

Return type output (string)
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opensoundscape.raven.raven_audio_split_and_save(raven_directory, audio_directory,
destination, col, sample_rate,
clip_duration, clip_overlap=0, fi-
nal_clip=None, extensions=[’wav’,
’WAV’, ’mp3’], csv_name=’labels.csv’,
labeled_clips_only=False,
min_label_len=0, species=None,
dry_run=False, verbose=False)

Split audio and annotations files simultaneously

Splits audio into short clips with the desired overlap. Saves these clips and a one-hot encoded labels CSV into
the directory of choice. Labels for csv are selected based on all labels in clips.

Requires that audio and annotation filenames are unique, and that the “stem” of annotation filenames is the same
as the corresponding stem of the audio filename (Raven saves files using this convention by default).

E.g. The following format is correct: audio_directory/audio_file_1.wav
raven_directory/audio_file_1.Table.1.selections.txt

Parameters

• raven_directory (str or pathlib.Path) – The path which contains lowercase
Raven annotations file(s)

• audio_directory (str or pathlib.Path) – The path which contains audio
file(s) with names the same as annotation files

• destination (str or pathlib.Path) – The path at which to save the splits and
the one-hot encoded labels file

• col (str) – The column containing species labels in the Raven files

• sample_rate (int) – Desired sample rate of split audio clips

• clip_duration (float) – Length of each clip

• clip_overlap (float) – Amount of overlap between subsequent clips [default: 0]

• final_clip (str or None) – Behavior if final_clip is less than clip_duration seconds
long. [default: None] By default, ignores final clip entirely. Possible options (any other
input will ignore the final clip entirely),

– ”remainder”: Include the remainder of the Audio (clip will not have clip_duration length)

– ”full”: Increase the overlap to yield a clip with clip_duration length

– ”extend”: Similar to remainder but extend (repeat) the clip to reach clip_duration length

• extensions (list) – List of audio filename extensions to look for. [default: [‘wav’,
‘WAV’, ‘mp3’]]

• csv_name (str) – Filename of the output csv, to be saved in the specified destination
[default: ‘labels.csv’]

• min_label_len (float) – the minimum amount a label must overlap with the split
to be considered a label. Useful for excluding short annotations or annotations that barely
overlap the split. For example, if 1, the label will only be included if the annotation is at
least 1s long and either starts at least 1s before the end of the split, or ends at least 1s after
the start of the split. By default, any label is kept [default: 0]

• labeled_clips_only (bool) – Whether to only save clips that contain labels of the
species of interest. [default: False]
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• species (str, list, or None) – Species labels to get. If None, gets a list of labels
from all selections files. [default: None]

• dry_run (bool) – If True, skip writing audio and just return clip DataFrame [default:
False]

• verbose (bool) – If True, prints progress information [default:False]

Returns:

opensoundscape.raven.split_single_annotation(raven_file, col, split_len_s, over-
lap_len_s=0, total_len_s=None,
keep_final=False, species=None,
min_label_len=0)

Split a Raven selection table into short annotations

Aggregate one-hot annotations for even-lengthed time segments, drawing annotations from a specified column
of a Raven selection table

Parameters

• raven_file (str) – path to Raven selections file

• col (str) – name of column in Raven file to look for annotations in

• split_len_s (float) – length of segments to break annotations into (e.g. for 5s: 5)

• overlap_len_s (float) – length of overlap between segments (e.g. for 2.5s: 2.5)

• total_len_s (float) – length of original file (e.g. for 5-minute file: 300) If not pro-
vided, estimates length based on end time of last annotation [default: None]

• keep_final (string) – whether to keep annotations from the final clip if the final clip
is less than split_len_s long. If using “remainder”, “full”, or “extend” with split_and_save,
make this True. Else, make it False. [default: False]

• species (str, list, or None) – species or list of species annotations to look for
[default: None]

• min_label_len (float) – the minimum amount a label must overlap with the split
to be considered a label. Useful for excluding short annotations or annotations that barely
overlap the split. For example, if 1, the label will only be included if the annotation is at
least 1s long and either starts at least 1s before the end of the split, or ends at least 1s after
the start of the split. By default, any label is kept [default: 0]

Returns

columns ‘seg_start’, ‘seg_end’, and all species, each row containing 1/0 annotations for each
species in a segment

Return type splits_df (pd.DataFrame)

opensoundscape.raven.split_starts_ends(raven_file, col, starts, ends, species=None,
min_label_len=0)

Split Raven annotations using a list of start and end times

This function takes an array of start times and an array of end times, creating a one-hot encoded labels file by
finding all Raven labels that fall within each start and end time pair.

This function is called by split_single_annotation(), which generates lists of start and end times. It is also
called by raven_audio_split_and_save(), which gets the lists from metadata about audio files split by open-
soundscape.audio.split_and_save.

Parameters
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• raven_file (pathlib.Path or str) – path to selections.txt file

• col (str) – name of column containing annotations

• starts (list) – start times of clips

• ends (list) – end times of clips

• species (str or list) – species names for columns of one-hot encoded file [default:
None]

• min_label_len (float) – the minimum amount a label must overlap with the split
to be considered a label. Useful for excluding short annotations or annotations that barely
overlap the split. For example, if 1, the label will only be included if the annotation is at
least 1s long and either starts at least 1s before the end of the split, or ends at least 1s after
the start of the split. By default, any label is kept [default: 0]

Returns columns: ‘seg_start’, ‘seg_end’, and all unique labels (‘species’) rows: one per segment,
containing 1/0 annotations for each potential label

Return type splits_df (pd.DataFrame)

10.2 Species Table

10.3 Taxa

a set of utilites for converting between scientific and common names of bird species in different naming systems (xeno
canto and bird net)

opensoundscape.taxa.bn_common_to_sci(common)
convert bird net common name (ignoring dashes, spaces, case) to scientific name as lowercase-hyphenated

opensoundscape.taxa.common_to_sci(common)
convert bird net common name (ignoring dashes, spaces, case) to scientific name as lowercase-hyphenated

opensoundscape.taxa.get_species_list()
list of scientific-names (lowercase-hyphenated) of species in the loaded species table

opensoundscape.taxa.sci_to_bn_common(scientific)
convert scientific name as lowercase-hyphenated to birdnet common name as lowercasenospaces

opensoundscape.taxa.sci_to_xc_common(scientific)
convert scientific name as lowercase-hyphenated to xeno-canto common name as lowercasenospaces

opensoundscape.taxa.xc_common_to_sci(common)
convert xeno-canto common name (ignoring dashes, spaces, case) to scientific name as lowercase-hyphenated
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CHAPTER 11

Audio

11.1 Audio

audio.py: Utilities for dealing with audio files

class opensoundscape.audio.Audio(samples, sample_rate, resample_type=’kaiser_fast’,
max_duration=None)

Container for audio samples

Initializing an Audio object directly requires the specification of the sample rate. Use Audio.from_file or Au-
dio.from_bytesio with sample_rate=None to use a native sampling rate.

Parameters

• samples (np.array) – The audio samples

• sample_rate (integer) – The sampling rate for the audio samples

• resample_type (str) – The resampling method to use [default: “kaiser_fast”]

• max_duration (None or integer) – The maximum duration allowed for the audio
file [default: None]

Returns An initialized Audio object

bandpass(low_f, high_f, order)
Bandpass audio signal frequencies

Uses a phase-preserving algorithm (scipy.signal’s butter and solfiltfilt)

Parameters

• low_f – low frequency cutoff (-3 dB) in Hz of bandpass filter

• high_f – high frequency cutoff (-3 dB) in Hz of bandpass filter

• order – butterworth filter order (integer) ~= steepness of cutoff

duration()
Return duration of Audio
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Returns The duration of the Audio

Return type duration (float)

extend(length)
Extend audio file by looping it

Parameters length – the final length in seconds of the extended file

Returns a new Audio object of the desired length

classmethod from_bytesio(bytesio, sample_rate=None, max_duration=None, resam-
ple_type=’kaiser_fast’)

Read from bytesio object

Read an Audio object from a BytesIO object. This is primarily used for passing Audio over HTTP.

Parameters

• bytesio – Contents of WAV file as BytesIO

• sample_rate – The final sampling rate of Audio object [default: None]

• max_duration – The maximum duration of the audio file [default: None]

• resample_type – The librosa method to do resampling [default: “kaiser_fast”]

Returns An initialized Audio object

classmethod from_file(path, sample_rate=None, resample_type=’kaiser_fast’,
max_duration=None)

Load audio from files

Deal with the various possible input types to load an audio file and generate a spectrogram

Parameters

• path (str, Path) – path to an audio file

• sample_rate (int, None) – resample audio with value and resample_type, if None
use source sample_rate (default: None)

• resample_type – method used to resample_type (default: kaiser_fast)

• max_duration – the maximum length of an input file, None is no maximum (default:
None)

Returns attributes samples and sample_rate

Return type Audio

resample(sample_rate, resample_type=None)
Resample Audio object

Parameters

• sample_rate (scalar) – the new sample rate

• resample_type (str) – resampling algorithm to use [default: None (uses
self.resample_type of instance)]

Returns a new Audio object of the desired sample rate

save(path)
Save Audio to file

Parameters path – destination for output
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spectrum()
Create frequency spectrum from an Audio object using fft

Parameters self –

Returns fft, frequencies

split(clip_duration, clip_overlap=0, final_clip=None)
Split Audio into clips

The Audio object is split into clips of a specified duration and overlap

Parameters

• clip_duration (float) – The duration in seconds of the clips

• clip_overlap (float) – The overlap of the clips in seconds [default: 0]

• final_clip (str) – Behavior if final_clip is less than clip_duration seconds long.
[default: None] By default, ignores final clip entirely. Possible options (any other input
will ignore the final clip entirely),

– ”remainder”: Include the remainder of the Audio (clip will not have clip_duration
length)

– ”full”: Increase the overlap to yield a clip with clip_duration length

– ”extend”: Similar to remainder but extend (repeat) the clip to reach clip_duration length

Returns [“audio”, “begin_time”, “end_time”]

Return type A list of dictionaries with keys

time_to_sample(time)
Given a time, convert it to the corresponding sample

Parameters time – The time to multiply with the sample_rate

Returns The rounded sample

Return type sample

trim(start_time, end_time)
Trim Audio object in time

Parameters

• start_time – time in seconds for start of extracted clip

• end_time – time in seconds for end of extracted clip

Returns a new Audio object containing samples from start_time to end_time

exception opensoundscape.audio.OpsoLoadAudioInputError
Custom exception indicating we can’t load input

exception opensoundscape.audio.OpsoLoadAudioInputTooLong
Custom exception indicating length of audio is too long

opensoundscape.audio.split_and_save(audio, destination, prefix, clip_duration, clip_overlap=0,
final_clip=None, dry_run=False)

Split audio into clips and save them to a folder

Parameters

• audio – The input Audio to split

• destination – A folder to write clips to
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• prefix – A name to prepend to the written clips

• clip_duration – The duration of each clip in seconds

• clip_overlap – The overlap of each clip in seconds [default: 0]

• final_clip (str) – Behavior if final_clip is less than clip_duration seconds long. [de-
fault: None] By default, ignores final clip entirely. Possible options (any other input will
ignore the final clip entirely),

– ”remainder”: Include the remainder of the Audio (clip will not have clip_duration length)

– ”full”: Increase the overlap to yield a clip with clip_duration length

– ”extend”: Similar to remainder but extend (repeat) the clip to reach clip_duration length

• dry_run (bool) – If True, skip writing audio and just return clip DataFrame [default:
False]

Returns pandas.DataFrame containing begin and end times for each clip from the source audio

11.2 Audio Tools

audio_tools.py: set of tools that filter or modify audio files or sample arrays (not Audio objects)

opensoundscape.audio_tools.bandpass_filter(signal, low_f, high_f, sample_rate, order=9)
perform a butterworth bandpass filter on a discrete time signal using scipy.signal’s butter and solfiltfilt (phase-
preserving version of sosfilt)

Parameters

• signal – discrete time signal (audio samples, list of float)

• low_f – -3db point (?) for highpass filter (Hz)

• high_f – -3db point (?) for highpass filter (Hz)

• sample_rate – samples per second (Hz)

• order=9 – higher values -> steeper dropoff

Returns filtered time signal

opensoundscape.audio_tools.butter_bandpass(low_f, high_f, sample_rate, order=9)
generate coefficients for bandpass_filter()

Parameters

• low_f – low frequency of butterworth bandpass filter

• high_f – high frequency of butterworth bandpass filter

• sample_rate – audio sample rate

• order=9 – order of butterworth filter

Returns set of coefficients used in sosfiltfilt()

opensoundscape.audio_tools.clipping_detector(samples, threshold=0.6)
count the number of samples above a threshold value

Parameters

• samples – a time series of float values

• threshold=0.6 – minimum value of sample to count as clipping
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Returns number of samples exceeding threshold

opensoundscape.audio_tools.convolve_file(in_file, out_file, ir_file, input_gain=1.0)
apply an impulse_response to a file using ffmpeg’s afir convolution

ir_file is an audio file containing a short burst of noise recorded in a space whose acoustics are to be recreated

this makes the files ‘sound as if’ it were recorded in the location that the impulse response (ir_file) was recorded

Parameters

• in_file – path to an audio file to process

• out_file – path to save output to

• ir_file – path to impulse response file

• input_gain=1.0 – ratio for in_file sound’s amplitude in (0,1)

Returns os response of ffmpeg command

opensoundscape.audio_tools.mixdown_with_delays(files_to_mix, destination, delays=None,
levels=None, duration=’first’, ver-
bose=0, create_txt_file=False)

use ffmpeg to mixdown a set of audio files, each starting at a specified time (padding beginnings with zeros)

Parameters

• files_to_mix – list of audio file paths

• destination – path to save mixdown to

• delays=None – list of delays (how many seconds of zero-padding to add at beginning of
each file)

• levels=None – optionally provide a list of relative levels (amplitudes) for each input

• duration='first' – ffmpeg option for duration of output file: match duration of
‘longest’,’shortest’,or ‘first’ input file

• verbose=0 – if >0, prints ffmpeg command and doesn’t suppress ffmpeg output (com-
mand line output is returned from this function)

• create_txt_file=False – if True, also creates a second output file which lists all
files that were included in the mixdown

Returns ffmpeg command line output

opensoundscape.audio_tools.silence_filter(filename, smoothing_factor=10,
window_len_samples=256, over-
lap_len_samples=128, threshold=None)

Identify whether a file is silent (0) or not (1)

Load samples from an mp3 file and identify whether or not it is likely to be silent. Silence is determined by
finding the energy in windowed regions of these samples, and normalizing the detected energy by the average
energy level in the recording.

If any windowed region has energy above the threshold, returns a 0; else returns 1.

Parameters

• filename (str) – file to inspect

• smoothing_factor (int) – modifier to window_len_samples

• window_len_samples – number of samples per window segment

• overlap_len_samples – number of samples to overlap each window segment
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• threshold – threshold value (experimentally determined)

Returns 0 if file contains no significant energy over bakcground 1 if file contains significant energy
over bakcground

If threshold is None: returns net_energy over background noise

opensoundscape.audio_tools.window_energy(samples, window_len_samples=256, over-
lap_len_samples=128)

Calculate audio energy with a sliding window

Calculate the energy in an array of audio samples

Parameters

• samples (np.ndarray) – array of audio samples loaded using librosa.load

• window_len_samples – samples per window

• overlap_len_samples – number of samples shared between consecutive windows

Returns list of energy level (float) for each window
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CHAPTER 12

Localization

opensoundscape.localization.calc_speed_of_sound(temperature=20)
Calculate speed of sound in meters per second

Calculate speed of sound for a given temperature in Celsius (Humidity has a negligible effect on speed of sound
and so this functionality is not implemented)

Parameters temperature – ambient temperature in Celsius

Returns the speed of sound in meters per second

opensoundscape.localization.localize(receiver_positions, arrival_times, temperature=20.0,
invert_alg=’gps’, center=True, pseudo=True)

Perform TDOA localization on a sound event

Localize a sound event given relative arrival times at multiple receivers. This function implements a localization
algorithm from the equations described in the class handout (“Global Positioning Systems”). Localization can
be performed in a global coordinate system in meters (i.e., UTM), or relative to recorder positions in meters.

Parameters

• receiver_positions – a list of [x,y,z] positions for each receiver Positions should be
in meters, e.g., the UTM coordinate system.

• arrival_times – a list of TDOA times (onset times) for each recorder The times should
be in seconds.

• temperature – ambient temperature in Celsius

• invert_alg – what inversion algorithm to use

• center – whether to center recorders before computing localization result. Computes
localization relative to centered plot, then translates solution back to original recorder loca-
tions. (For behavior of original Sound Finder, use True)

• pseudo – whether to use the pseudorange error (True) or sum of squares discrepancy
(False) to pick the solution to return (For behavior of original Sound Finder, use False.
However, in initial tests, pseudorange error appears to perform better.)
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Returns The solution (x,y,z,b) with the lower sum of squares discrepancy b is the error in the pseu-
dorange (distance to mics), b=c*delta_t (delta_t is time error)

opensoundscape.localization.lorentz_ip(u, v=None)
Compute Lorentz inner product of two vectors

For vectors u and v, the Lorentz inner product for 3-dimensional case is defined as

u[0]*v[0] + u[1]*v[1] + u[2]*v[2] - u[3]*v[3]

Or, for 2-dimensional case as

u[0]*v[0] + u[1]*v[1] - u[2]*v[2]

Parameters

• u – vector with shape either (3,) or (4,)

• v – vector with same shape as x1; if None (default), sets v = u

Returns value of Lorentz IP

Return type float

opensoundscape.localization.travel_time(source, receiver, speed_of_sound)
Calculate time required for sound to travel from a souce to a receiver

Parameters

• source – cartesian position [x,y] or [x,y,z] of sound source

• receiver – cartesian position [x,y] or [x,y,z] of sound receiver

• speed_of_sound – speed of sound in m/s

Returns time in seconds for sound to travel from source to receiver
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CHAPTER 13

Machine Learning

13.1 Data Selection

opensoundscape.data_selection.add_binary_numeric_labels(input_df, label, in-
put_column=’Labels’, out-
put_column=’NumericLabels’)

Add binary numeric labels to dataframe based on label

Given a dataframe and a label from input_column produce a new dataframe with an output_column and a label
map

Parameters

• input_df – A dataframe

• label – The label to set to 1

• input_column – The column to read labels from

• output_column – The column to write numeric labels to

Returns A dataframe with an additional output_column label_map: A dictionary, keys are
f”not_{label}” and f”{label}”, values are 0 and 1

Return type output_df

opensoundscape.data_selection.add_numeric_labels(input_df, input_column=’Labels’,
output_column=’NumericLabels’)

Add numeric labels to dataframe

Given a dataframe with input_column produce a new dataframe with an output_column and a label map

Parameters

• input_df – A dataframe

• input_column – The column to read labels from

• output_column – The column to write numeric labels to

77



opensoundscape, Release 0.4.7

Returns A dataframe with an additional output_column label_map: A dictionary, keys are the
unique labels and monotonically increasing values starting at 0

Return type output_df

opensoundscape.data_selection.expand_multi_labeled(input_df, col-
umn_header=’Labels’, la-
bel_separator=’|’)

Given a multi-labeled dataframe, generate a singly-labeled dataframe

Given a Dataframe with a “Labels” column that is multi-labeled (e.g. “hello|world”) split the row into singly
labeled rows.

Parameters

• input_df – A Dataframe with a multi-labeled column

• column_header – The column containing multiple labels [default: “Labels”]

• label_separator – Multiple labels are separated by this [default: “|”]

Returns A Dataframe with singly-labeled column in column_header

Return type output_df

opensoundscape.data_selection.train_valid_split(input_df, strat-
ify_from_column=’Labels’,
train_size=0.8, random_state=101)

Split a dataframe into train and validation dataframes

Given an input dataframe with a labels column split each unique label into a train size and 1 - train_size for
training and validation sets. If stratify_from_column is None don’t stratify.

Parameters

• input_df – A dataframe

• stratify_from_column – Name of the column that labels should come from [default:
“Labels”] - given None will not attempt stratified sampling

• train_size – The decimal fraction to use for the training set [default: 0.8]

• random_state – The random state to use for train_test_split [default: 101]

Returns A Dataframe containing the training set valid_df: A Dataframe containing the validation
set

Return type train_df

opensoundscape.data_selection.upsample(input_df, label_column=’Labels’, ran-
dom_state=None)

Given a input DataFrame upsample to maximum value

Upsampling removes the class imbalance in your dataset. Rows for each label are repeated up to max_count //
rows. Then, we randomly sample the rows to fill up to max_count.

Parameters

• input_df – A DataFrame to upsample

• label_column – The column to draw unique labels from

• random_state – Set the random_state during sampling

Returns An upsampled DataFrame

Return type df
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13.2 Datasets

class opensoundscape.datasets.SingleTargetAudioDataset(df, label_dict, file-
name_column=’Destination’,
from_audio=True, la-
bel_column=None,
height=224, width=224,
add_noise=False,
save_dir=None, ran-
dom_trim_length=None,
extend_short_clips=False,
max_overlay_num=0,
overlay_prob=0.2, over-
lay_weight=’random’,
overlay_class=None, au-
dio_sample_rate=22050,
debug=None)

Single Target Audio -> Image Dataset

Given a DataFrame with audio files in one of the columns, generate a Dataset of spectrogram images for basic
machine learning tasks.

This class provides access to several types of augmentations that act on audio and images with the following ar-
guments: - add_noise: for adding RandomAffine and ColorJitter noise to images - random_trim_length: for only
using a short random clip extracted from the training data - max_overlay_num / overlay_prob / overlay_weight:

controlling the maximum number of additional spectrograms to overlay, the probability of overlaying
an individual spectrogram, and the weight for the weighted sum of the spectrograms

Additional augmentations on tensors are available when calling train() from the module opensound-
scape.torch.train.

Parameters

• df – A DataFrame with a column containing audio files

• label_dict – a dictionary mapping numeric labels to class names, - for example:
{0:’American Robin’,1:’Northern Cardinal’} - pass None if you wish to retain numeric la-
bels

• filename_column – The column in the DataFrame which contains paths to data [default:
Destination]

• from_audio – Whether the raw dataset is audio [default: True]

• label_column – The column with numeric labels if present [default: None]

• height – Height for resulting Tensor [default: 224]

• width – Width for resulting Tensor [default: 224]

• add_noise – Apply RandomAffine and ColorJitter filters [default: False]

• save_dir – Save images to a directory [default: None]

• random_trim_length – Extract a clip of this many seconds of audio starting at a ran-
dom time. If None, the original clip will be used [default: None]

• extend_short_clips – If a file to be overlaid or trimmed from is too short, extend it
to the desired length by repeating it. [default: False]
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• max_overlay_num – The maximum number of additional images to overlay, each with
probability overlay_prob [default: 0]

• overlay_prob – Probability of an image from a different class being overlayed (com-
bined as a weighted sum) on the training image. typical values: 0, 0.66 [default: 0.2]

• overlay_weight – The weight given to the overlaid image during augmentation. When
‘random’, will randomly select a different weight between 0.2 and 0.5 for each overlay.
When not ‘random’, should be a float between 0 and 1 [default: ‘random’]

• overlay_class – The label of the class that overlays should be drawn from. Must be
specified if max_overlay_num > 0. If ‘different’, draws overlays from any class that is not
the same class as the audio. If set to a class label, draws overlays from that class. When
creating a presence/absence classifier, set overlay_class equal to the absence class label
[default: None]

• audio_sample_rate – resample audio to this sample rate; specify None to use original
audio sample rate [default: 22050]

• debug – path to save img files, images are created from the tensor immediately before it is
returned. When None, does not save images. [default: None]

Returns { “X”: (3, H, W) , “y”: (1) if label_column != None }

Return type Dictionary

image_from_audio(audio, mode=’RGB’)
Create a PIL image from audio

Parameters

• audio – audio object

• mode – PIL image mode, e.g. “L” or “RGB” [default: RGB]

overlay_random_image(original_image, original_length, original_class, original_path)
Overlay an image from another class

Select a random file from a different class. Trim if necessary to the same length as the given image.
Overlay the images on top of each other with a weight

class opensoundscape.datasets.SplitterDataset(wavs, annotations=False, la-
bel_corrections=None, overlap=1, dura-
tion=5, output_directory=’segments’,
include_last_segment=False,
column_separator=’t’,
species_separator=’|’)

A PyTorch Dataset for splitting a WAV files

Segments will be written to the output_directory

Parameters

• wavs – A list of WAV files to split

• annotations – Should we search for corresponding annotations files? (default: False)

• label_corrections – Specify a correction labels CSV file w/ column headers “raw”
and “corrected” (default: None)

• overlap – How much overlap should there be between samples (units: seconds, default:
1)

• duration – How long should each segment be? (units: seconds, default: 5)
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• Where should segments be written? (default (output_directory) –
segments/)

• include_last_segment – Do you want to include the last segment? (default: False)

• column_separator – What character should we use to separate columns (default: ” “)

• species_separator – What character should we use to separate species (default: “|”)

Returns

A list of CSV rows (separated by column_separator) containing the source audio, segment
begin time (seconds), segment end time (seconds), segment audio, and present classes sep-
arated by species_separator if annotations were requested

Return type output

opensoundscape.datasets.annotations_with_overlaps_with_clip(df, begin, end)
Determine if any rows overlap with current segment

Parameters

• df – A dataframe containing a Raven annotation file

• begin – The begin time of the current segment (unit: seconds)

• end – The end time of the current segment (unit: seconds)

Returns A dataframe of annotations which overlap with the begin/end times

Return type sub_df

opensoundscape.datasets.get_md5_digest(input_string)
Generate MD5 sum for a string

Parameters input_string – An input string

Returns A string containing the md5 hash of input string

Return type output

13.3 Grad Cam

13.4 Metrics

class opensoundscape.metrics.Metrics(classes, dataset_len)
Basic Example

See opensoundscape.torch.train for an in-depth example

‘‘‘ dataset = Dataset(. . . ) dataloader = DataLoader(dataset, . . . ) classes = [0, 1, 2, 3, 4] # An example list of
classes for epoch in epochs:

metrics = Metrics(classes, len(dataset)) for batch in dataloader:

X, y = batch[“X”], batch[“y”] targets = y.squeeze(0) # dim: (batch_size) . . . loss = . . . #
dim: (0) predictions = . . . # dim: (batch_size) metrics.accumulate_batch_metrics(

loss.item(), targets.cpu(), predictions.cpu()

)

metrics_dictionary = metrics.compute_epoch_metrics()
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‘‘‘

accumulate_batch_metrics(loss, targets, predictions)
For a batch, accumulate loss and confusion matrix

For validation pass 0 for loss.

Parameters

• loss – The loss for this batch

• targets – The correct y labels

• predictions – The predicted labels

compute_epoch_metrics()
Compute metrics from learning

Computes the loss and accuracy, precision, recall, and f1 scores from the confusion matrix and returns
dictionary with metric name as keys and their corresponding values

Returns [loss, accuracy, precision, recall, f1, confusion_matrix]

Return type dictionary with keys

13.5 PyTorch Prediction

opensoundscape.torch.predict.predict(model, prediction_dataset, batch_size=1,
num_workers=1, apply_softmax=True, la-
bel_dict=None)

Generate predictions on a dataset from a binary pytorch model object

Parameters

• model – A binary torch model, e.g. torchvision.models.resnet18(pretrained=True) - must
override classes, e.g. model.fc = torch.nn.Linear(model.fc.in_features, 2)

• prediction_dataset – a pytorch dataset object that returns tensors, such as
datasets.SingleTargetAudioDataset()

• batch_size – The size of the batches (# files) [default: 1]

• num_workers – The number of cores to use for batch preparation [default: 1] - if you
want to use all the cores on your machine, set it to 0 (this could freeze your computer)

• apply_softmax – Apply a softmax activation layer to the raw outputs of the model

• label_dict – List of names of each class, with indices corresponding to NumericLabels
[default: None] - if None, the dataframe returned will have numeric column names - if list
of class names, returned dataframe will have class names as column names

Returns A dataframe with the CNN prediction results for each class and each file

Notes

if label_dict is not None, the returned dataframe’s columns will be class names instead of numeric labels
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13.6 PyTorch Spectrogram Augmentation

These functions were implemented for PyTorch in the following repository https://github.com/zcaceres/spec_augment
The original paper is available on https://arxiv.org/abs/1904.08779

13.7 PyTorch Training

opensoundscape.torch.train.train(save_dir, model, train_dataset, valid_dataset, optimizer,
loss_fn, epochs=25, batch_size=1, num_workers=0,
log_every=5, tensor_augment=False, debug=False,
print_logging=True, save_scores=False)

Train a model

Parameters

• save_dir – A directory to save intermediate results

• model – A binary torch model, - e.g. torchvision.models.resnet18(pretrained=True) - must
override classes, e.g. model.fc = torch.nn.Linear(model.fc.in_features, 2)

• train_dataset – The training Dataset, e.g. created by SingleTargetAudioDataset()

• valid_dataset – The validation Dataset, e.g. created by SingleTargetAudioDataset()

• optimizer – A torch optimizer, e.g. torch.optim.SGD(model.parameters(), lr=1e-3)

• loss_fn – A torch loss function, e.g. torch.nn.CrossEntropyLoss()

• epochs – The number of epochs [default: 25]

• batch_size – The size of the batches [default: 1]

• num_workers – The number of cores to use for batch preparation [default: 1]

• log_every – Log statistics when epoch % log_every == 0 [default: 5]

• tensor_augment – Whether or not to use the tensor augment procedures [default: False]

• debug – Whether or not to write intermediate images [default: False]

• print_logging – Whether to print training progress to stdout [default: True]

• save_scores – Whether to save the scores on the train/val set each epoch [default: False]

Effects:

Write a file epoch-{epoch}.tar containing (rate of log_every):

• Model state dictionary

• Optimizer state dictionary

• Labels in YAML format

• Train: loss, accuracy, precision, recall, and f1 score

• Validation: accuracy, precision, recall, and f1 score

• train_dataset.label_dict

Write a metadata file with parameter values to save_dir/metadata.txt

Returns None
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CHAPTER 14

Miscellaneous

14.1 Commands

opensoundscape.commands.run_command(cmd)
Run a command returning output, error

Parameters cmd – A string containing some command

Returns A tuple of standard out and standard error

Return type (stdout, stderr)

opensoundscape.commands.run_command_return_code(cmd)
Run a command returning the return code

Parameters cmd – A string containing some command

Returns The return code of the function

Return type return_code

14.2 Completions

14.3 Config

opensoundscape.config.get_default_config()
Get the default configuration file as a dictionary

Returns A dictionary containing the default Opensoundscape configuration

Return type dict

opensoundscape.config.validate(config)
Validate a configuration string

85



opensoundscape, Release 0.4.7

Parameters config – A string containing an Opensoundscape configuration

Returns A dictionary of the validated Opensoundscape configuration

Return type dict

opensoundscape.config.validate_file(fname)
Validate a configuration file

Parameters fname – A filename containing an Opensoundscape configuration

Returns A dictionary of the validated Opensoundscape configuration

Return type dict

14.4 Console

console.py: Entrypoint for opensoundscape

opensoundscape.console.build_docs()
Run sphinx-build for our project

opensoundscape.console.entrypoint()
The Opensoundscape entrypoint for console interaction

14.5 Console Checks

Utilities related to console checks on docopt args

14.6 Helpers

opensoundscape.helpers.binarize(x, threshold)
return a list of 0, 1 by thresholding vector x

opensoundscape.helpers.bound(x, bounds)
restrict x to a range of bounds = [min, max]

opensoundscape.helpers.file_name(path)
get file name without extension from a path

opensoundscape.helpers.hex_to_time(s)
convert a hexidecimal, Unix time string to a datetime timestamp

opensoundscape.helpers.isNan(x)
check for nan by equating x to itself

opensoundscape.helpers.jitter(x, width, distribution=’gaussian’)
Jitter (add random noise to) each value of x

Parameters

• x – scalar, array, or nd-array of numeric type

• width – multiplier for random variable (stdev for ‘gaussian’ or r for ‘uniform’)

• distribution – ‘gaussian’ (default) or ‘uniform’ if ‘gaussian’: draw jitter from gaussian
with mu = 0, std = width if ‘uniform’: draw jitter from uniform on [-width, width]
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Returns x + random jitter

Return type jittered_x

opensoundscape.helpers.linear_scale(array, in_range=(0, 1), out_range=(0, 255))
Translate from range in_range to out_range

Inputs: in_range: The starting range [default: (0, 1)] out_range: The output range [default: (0, 255)]

Outputs: new_array: A translated array

opensoundscape.helpers.min_max_scale(array, feature_range=(0, 1))
rescale vaues in an a array linearly to feature_range

opensoundscape.helpers.rescale_features(X, rescaling_vector=None)
rescale all features by dividing by the max value for each feature

optionally provide the rescaling vector (1xlen(X) np.array), so that you can rescale a new dataset consistently
with an old one

returns rescaled feature set and rescaling vector

opensoundscape.helpers.run_command(cmd)
run a bash command with Popen, return response

opensoundscape.helpers.sigmoid(x)
sigmoid function
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CHAPTER 15

RIBBIT

Detect periodic vocalizations with RIBBIT

This module provides functionality to search audio for periodically fluctuating vocalizations.

opensoundscape.ribbit.calculate_pulse_score(amplitude, amplitude_sample_rate,
pulse_rate_range, plot=False, nfft=1024)

Search for amplitude pulsing in an audio signal in a range of pulse repetition rates (PRR)

scores an audio amplitude signal by highest value of power spectral density in the PRR range

Parameters

• amplitude – a time series of the audio signal’s amplitude (for instance a smoothed raw
audio signal)

• amplitude_sample_rate – sample rate in Hz of amplitude signal, normally ~20-200
Hz

• pulse_rate_range – [min, max] values for amplitude modulation in Hz

• plot=False – if True, creates a plot visualizing the power spectral density

• nfft=1024 – controls the resolution of the power spectral density (see scipy.signal.welch)

Returns pulse rate score for this audio segment (float)

opensoundscape.ribbit.pulse_finder_species_set(spec, species_df, win-
dow_len=’from_df’, plot=False)

perform windowed pulse finding (ribbit) on one file for each species in a set

Parameters

• spec – opensoundscape.Spectrogram object

• species_df – a dataframe describing species by their pulsed calls. columns: species |
pulse_rate_low (Hz)| pulse_rate_high (Hz) | low_f (Hz)| high_f (Hz)| reject_low (Hz)| re-
ject_high (Hz) |

window_length (sec) (optional) | reject_low2 (opt) | reject_high2 |
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• window_len – length of analysis window, in seconds. Or ‘from_df’ (default): read from
dataframe. or ‘dynamic’: adjust window size based on pulse_rate

Returns the same dataframe with a “score” (max score) column and “time_of_score” column

opensoundscape.ribbit.ribbit(spectrogram, signal_band, pulse_rate_range, window_len,
noise_bands=None, plot=False)

Run RIBBIT detector to search for periodic calls in audio

This tool searches for periodic energy fluctuations at specific repetition rates and frequencies.

Parameters

• spectrogram – opensoundscape.Spectrogram object of an audio file

• signal_band – [min, max] frequency range of the target species, in Hz

• pulse_rate_range – [min,max] pulses per second for the target species

• windo_len – the length of audio (in seconds) to analyze at one time - one RIBBIT score
is produced for each window

• noise_bands – list of frequency bands to subtract from the desired signal_band For in-
stance: [ [min1,max1] , [min2,max2] ] - if None, no noise bands are used - default: None

• plot=False – if True, plot the power spectral density for each window

Returns pulse score (float) for each time window array of time: start time of each window

Return type array of pulse_score

Notes

__PARAMETERS__ RIBBIT requires the user to select a set of parameters that describe the target vocalization.
Here is some detailed advice on how to use these parameters.

Signal Band: The signal band is the frequency range where RIBBIT looks for the target species. It is best to
pick a narrow signal band if possible, so that the model focuses on a specific part of the spectrogram and has
less potential to include erronious sounds.

Noise Bands: Optionally, users can specify other frequency ranges called noise bands. Sounds in the
noise_bands are _subtracted_ from the signal_band. Noise bands help the model filter out erronious sounds
from the recordings, which could include confusion species, background noise, and popping/clicking of the
microphone due to rain, wind, or digital errors. It’s usually good to include one noise band for very low frequen-
cies – this specifically eliminates popping and clicking from being registered as a vocalization. It’s also good to
specify noise bands that target confusion species. Another approach is to specify two narrow noise_bands that
are directly above and below the signal_band.

Pulse Rate Range: This parameters specifies the minimum and maximum pulse rate (the number of pulses per
second, also known as pulse repetition rate) RIBBIT should look for to find the focal species. For example,
choosing pulse_rate_range = [10, 20] means that RIBBIT should look for pulses no slower than 10 pulses per
second and no faster than 20 pulses per second.

Window Length: This parameter tells RIBBIT how many seconds of audio to analyze at one time. Generally,
you should choose a window_length that is similar to the length of the target species vocalization, or a little bit
longer. For very slowly pulsing vocalizations, choose a longer window so that at least 5 pulses can occur in one
window (0.5 pulses per second -> 10 second window). Typical values for window_length are 1 to 10 seconds.

Plot: We can choose to show the power spectrum of pulse repetition rate for each window by setting plot=True.
The default is not to show these plots (plot=False).
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__ALGORITHM__ This is the procedure RIBBIT follows: divide the audio into segments of length window_len
for each clip:

calculate time series of energy in signal band (signal_band) and subtract noise band energies
(noise_bands) calculate power spectral density of the amplitude time series score the file based on
the maximum value of power-spectral-density in the pulse rate range

opensoundscape.ribbit.summarize_top_scores(audio_files, list_of_result_dfs,
scale_factor=1.0)

find the highest score for each file and each species, and put them in a dataframe

Note: this function expects that the first column of the results_df contains species names

Parameters

• audio_files – a list of file paths

• list_of_result_dfs – a list of pandas DataFrames generated by ribbit_species_set()

• scale_factor=1.0 – optionally multiply all output values by a constant value

Returns a dataframe summarizing the highest score for each species in each file
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CHAPTER 16

Spectrogram

16.1 Mel Spectrogram

melspectrogram.py: Utilities for dealing with mel spectrograms

class opensoundscape.melspectrogram.MelSpectrogram(S, sample_rate, hop_length, fmin,
fmax)

Immutable spectrogram container

classmethod from_audio(audio, n_fft=1024, n_mels=128, window=’flattop’, win_length=256,
hop_length=32, htk=True, fmin=None, fmax=None)

Create a MelSpectrogram object from an Audio object

The kwargs are cherry-picked from:

• https://librosa.org/doc/latest/generated/librosa.feature.melspectrogram.html#librosa.feature.
melspectrogram

• https://librosa.org/doc/latest/generated/librosa.filters.mel.html?librosa.filters.mel

Parameters

• n_fft – Length of the FFT window [default: 1024]

• n_mels – Number of mel bands to generate [default: 128]

• window – The windowing function to use [default: “flattop”]

• win_length – Each frame of audio is windowed by window. The window will be of
length win_length and then padded with zeros to match n_fft [default: 256]

• hop_length – Number of samples between successive frames [default: 32]

• htk – use HTK formula instead of Slaney [default: True]

• fmin – lowest frequency (in Hz) [default: None]

• fmax – highest frequency (in Hz). If None, use fmax = sr / 2.0 [default: None]

Returns opensoundscape.melspectrogram.MelSpectrogram object
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to_image(shape=None, mode=’RGB’, s_range=(0, 20))
Generate PIL Image from MelSpectrogram

Given a range of values for S (e.g. default is minimum 0, maximum 20) generate a PIL image in 3-channel
(RGB) or single channel (L) mode. A user can optionally resize the image.

Parameters

• shape – Resize to shape (h, w) [default: None]

• mode – Mode to write out “RGB” or “L” [default: “RGB”]

• s_range – The input range of S [default: (0, 20)]

Returns PIL.Image

to_pcen(gain=0.8, bias=10.0, power=0.25, time_constant=0.06)
Create PCEN from MelSpectrogram

Argument descriptions come from https://librosa.org/doc/latest/generated/librosa.pcen.html?highlight=
pcen#librosa-pcen

Parameters

• gain – The gain factor. Typical values should be slightly less than 1 [default: 0.8]

• bias – The bias point of the nonlinear compression [default: 10.0]

• power – The compression exponent. Typical values should be between 0 and 0.5. Smaller
values of power result in stronger compression. At the limit power=0, polynomial com-
pression becomes logarithmic [default: 0.25]

• time_constant – The time constant for IIR filtering, measured in seconds [default:
0.06]

Returns The per-channel energy normalized version of MelSpectrogram.S

16.2 Spectrogram

spectrogram.py: Utilities for dealing with spectrograms

class opensoundscape.spectrogram.Spectrogram(spectrogram, frequencies, times)
Immutable spectrogram container

amplitude(freq_range=None)
create an amplitude vs time signal from spectrogram

by summing pixels in the vertical dimension

Args freq_range=None: sum Spectrogrm only in this range of [low, high] frequencies in Hz (if None, all
frequencies are summed)

Returns a time-series array of the vertical sum of spectrogram value

bandpass(min_f, max_f)
extract a frequency band from a spectrogram

crops the 2-d array of the spectrograms to the desired frequency range

Parameters

• min_f – low frequency in Hz for bandpass
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• high_f – high frequency in Hz for bandpass

Returns bandpassed spectrogram object

classmethod from_audio(audio, window_type=’hann’, window_samples=512, over-
lap_samples=256, decibel_limits=(-100, -20))

create a Spectrogram object from an Audio object

Parameters

• window_type="hann" – see scipy.signal.spectrogram docs for description of window
parameter

• window_samples=512 – number of audio samples per spectrogram window (pixel)

• overlap_samples=256 – number of samples shared by consecutive windows

• = (decibel_limits) – limit the dB values to (min,max) (lower values set to min,
higher values set to max)

Returns opensoundscape.spectrogram.Spectrogram object

classmethod from_file()
create a Spectrogram object from a file

Parameters file – path of image to load

Returns opensoundscape.spectrogram.Spectrogram object

limit_db_range(min_db=-100, max_db=-20)
Limit the decibel values of the spectrogram to range from min_db to max_db

values less than min_db are set to min_db values greater than max_db are set to max_db

similar to Audacity’s gain and range parameters

Parameters

• min_db – values lower than this are set to this

• max_db – values higher than this are set to this

Returns Spectrogram object with db range applied

linear_scale(feature_range=(0, 1))
Linearly rescale spectrogram values to a range of values using in_range as decibel_limits

Parameters feature_range – tuple of (low,high) values for output

Returns Spectrogram object with values rescaled to feature_range

min_max_scale(feature_range=(0, 1))
Linearly rescale spectrogram values to a range of values using in_range as minimum and maximum

Parameters feature_range – tuple of (low,high) values for output

Returns Spectrogram object with values rescaled to feature_range

net_amplitude(signal_band, reject_bands=None)
create amplitude signal in signal_band and subtract amplitude from reject_bands

rescale the signal and reject bands by dividing by their bandwidths in Hz (amplitude of each reject_band
is divided by the total bandwidth of all reject_bands. amplitude of signal_band is divided by badwidth of
signal_band. )

Parameters

• signal_band – [low,high] frequency range in Hz (positive contribution)
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• band (reject) – list of [low,high] frequency ranges in Hz (negative contribution)

return: time-series array of net amplitude

plot(inline=True, fname=None, show_colorbar=False)
Plot the spectrogram with matplotlib.pyplot

Parameters

• inline=True –

• fname=None – specify a string path to save the plot to (ending in .png/.pdf)

• show_colorbar – include image legend colorbar from pyplot

to_image(shape=None, mode=’RGB’, spec_range=[-100, -20])
create a Pillow Image from spectrogram linearly rescales values from db_range (default [-100, -20]) to
[255,0] (ie, -20 db is loudest -> black, -100 db is quietest -> white)

Parameters

• destination – a file path (string)

• shape=None – tuple of image dimensions, eg (224,224)

• mode="RGB" – RGB for 3-channel color or “L” for 1-channel grayscale

• spec_range=[-100,-20] – the lowest and highest possible values in the spectro-
gram

Returns Pillow Image object

trim(start_time, end_time)
extract a time segment from a spectrogram

Parameters

• start_time – in seconds

• end_time – in seconds

Returns spectrogram object from extracted time segment
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