opensoundscape
Release 0.6.2

Mar 25, 2022

Contents

Mac and Linux
1.1 Installation via Anaconda
1.2 Installation via venv

Windows

2.1 Get Ubuntu shell
2.2 Download Anaconda
2.3 Install OpenSoundscape in virtual environment

Contributors

3.1 Poetry installation
3.2 Contribution workflow

Jupyter

4.1 Use virtual environment
4.2 Create independent kernel

Audio and spectrograms
5.1 Quick start
5.2 Audio loading

5.3 Audio methods
5.4 Spectrogram creation
5.5 Spectrogram methods

Manipulating audio annotations
6.1 download example files
6.2 View a subset of annotations
6.3 saving annotations to Raven-compatible file
6.4 1. Split Audio object, then split annotations to match
6.5 2. Split annotations into labels (without audio splitting)
6.6 3. Split annotations directly using splitting parameters

6.7 find all the Raven and audio files, and see if they match up one-to-one
6.8 split and save the audio and annotations
6.9 sanity check: look at spectrograms of clips labeled 0 and 1

Prediction with pre-trained CNNs
7.1 Load required packages

W W

SN SN L

72 Loadasavedmodel e

7.3 generate predictions withthemodel
7.4 Using models from older OpenSoundscape versions v v v v v v
7.5 Options for prediction L
7.6 Deprecated: Using LongAudioPreprocessor to predict on (un-split) audio files

Beginner friendly training and prediction with CNNs

8.1 Prepareaudiodata L e
8.2 Training e e e e e e
83 Prediction e e e e e
84 Multi-classmodels e e e e
85 Saveandloadmodels L e
8.6 Predictusingsavedmodel L.
8.7 Continue training fromsaved model oL
8.8 NEXUSIEDS . . v v it e e e e e e e e e e e e e e
Custom preprocessing

9.1 Preparingaudiodata e e e e e
0.2 Intro to Preprocessors e e e e e e
9.3 Pipelines and actions e e e e e e e e e e
9.4 Modifying ACIONS i e e e e e e e e e e e e e
9.5 Modifying the pipeline L e
9.6 Customizing AudioToSpectrogramPrepPrOCEeSSOL « v v v v v v v v v e e e e e e e e e e
9.7 Customizing CNNPreprOCESSOL &« v v v v v v v v vt e e e et e e e e e e e e e e e
9.8 Creating anew Preprocessor class o e e e e e e
0.9 Defining new ACHONS . .« v v v v v v i e

10 Advanced CNN training

11

12

10.1 Prepareaudiodata e e e e e e e e e
10.2 Creatingamodel e e e e e e
10.3 Model training parameterst e e e e e e e e e e e e
10.4 Selecting CNN architectures o o v it e e e s e e e e e e
10.5 Sampling for imbalanced trainingdata L. oL
10.6 Multi-target training with CnnResampleLoss
10.7 Training and predicting with custom preprocessors v v v v v v v v v v e e e e e

RIBBIT Pulse Rate model demonstration

I1.1 Import packages v v it e e e e e e e e e e e e e e e e
11.2 Download example audio oL e e e e e e e e
11.3 Select model parameters e e e
11.4 Search for pulsing vocalizations with ribbit ()
11.5 Analyzingasetoffiles e
11.6 Run RIBBIT on multiple species simultaneously
11.7 Detail view of RIBBIT method i e
11.8 Time to experiment for yourself L o

Audio and Spectrograms

12,1 AnnotationS e e e e e e e e e e e e
122 Audio oL e e e
12.3 AudioMoth
124 Audio Tools o e e e e e e e e e e
12,5 SPectrogram oo e e e e e e e e e e e e e e

13 Machine Learning

13.1 Convolutional Neural Networks e e e e e e

51
52
58
61
64
66
67
67
68

69
70
71
73
75
77
79
80
83
84

87
88
89
90
91
93
94
94

97
97
98
99
100
102
103
106
108

111
111
115
119
120
122

127

14

15

16

17

18

13.2 Data Selection e e e e e e e e
133 GradCam o e e e e
134 LossFunctions e e
13.5 Safe Dataloading
13.6 Sampling e e e
13.7 Performance MetriCs o o i i e e e e e e e e e

Preprocessing

14.1 Image Augmentation ot ittt e e e e e e e e e e
14.2 Preprocessing ACHONS v v v v ittt e e e e e e e e e e e e e
14.3 PreproCessOrS . . v v v v v v v e et e
14.4 Tensor AUgmentationt v ittt e e e e e e e e e e e e e

Signal Processing
I5.1 RIBBIT
15.2 Signal Processing L e

Misc tools

16.1 Helpers o o e e e e e e e e e e e
16.2 Taxa o e e e e e e e e e e e e e e e e e e e
16.3 Localization e e e e e e e e e

Index

Modules

Python Module Index

Index

141
141
141
146
149

151
151
153

157
157
159
159

163

165

167

169

opensoundscape, Release 0.6.2

OpenSoundscape is free and open source software for the analysis of bioacoustic recordings (GitHub). Its main goals
are to allow users to train their own custom species classification models using a variety of frameworks (including
convolutional neural networks) and to use trained models to predict whether species are present in field recordings.
OpSo can be installed and run on a single computer or in a cluster or cloud environment.

OpenSoundcape is developed and maintained by the Kitzes Lab at the University of Pittsburgh.

The Installation section below provides guidance on installing OpSo. The Tutorials pages below are written as Jupyter
Notebooks that can also be downloaded from the project repository on GitHub.

Contents 1

https://github.com/kitzeslab/opensoundscape
http://www.kitzeslab.org/
http://github.com/kitzeslab/opensoundscape/

opensoundscape, Release 0.6.2

2 Contents

CHAPTER 1

Mac and Linux

OpenSoundscape can be installed on Mac and Linux machines with Python 3.7 (or 3.8) using the pip command pip
install opensoundscape==0.6.2. We recommend installing OpenSoundscape in a virtual environment to
prevent dependency conflicts.

Below are instructions for installation with two package managers:

* conda: Python and package management through Anaconda, a package manager popular among scientific
programmers

* venv: Python’s included virtual environment manager, venv

Feel free to use another virtual environment manager (e.g. virtualenvwrapper) if desired.

1.1 Installation via Anhaconda

Install Anaconda if you don’t already have it.
— Download the installer here, or
— follow the installation instructions for your operating system.

e Create a Python 3.7 (or 3.8) conda environment for opensoundscape: conda create —-name
opensoundscape pip python=3.7

¢ Activate the environment: conda activate opensoundscape
* Install opensoundscape using pip: pip install opensoundscape==0.6.2

* Deactivate the environment when you’re done using it: conda deactivate

1.2 Installation via venv

Download Python 3.7 (or 3.8) from this website.

https://www.anaconda.com/products/individual
https://docs.anaconda.com/anaconda/install/
https://www.python.org/downloads/

opensoundscape, Release 0.6.2

Run the following commands in your bash terminal:

Check that you have installed Python 3.7 (or 3.8)._: python3 —--version

Change directories to where you wish to store the environment: cd [path for environments
folder]

— Tip: You can use this folder to store virtual environments for other projects as well, so put it somewhere
that makes sense for you, e.g. in your home directory.

Make a directory for virtual environments and cd into it: mkdir .venv && cd .venv

Create an environment called opensoundscape in the directory: python3 -m venv
opensoundscape

Activate/use the environment: source opensoundscape/bin/activate
Install OpenSoundscape in the environment: pip install opensoundscape==0.6.2
Once you are done with OpenSoundscape, deactivate the environment: deactivate

To use the environment again, you will have to refer to absolute path of the virtual environments folder. For
instance, if I were on a Mac and created .venv inside a directory /Users/MyFiles/Code I would ac-
tivate the virtual environment using: source /Users/MyFiles/Code/.venv/opensoundscape/
bin/activate

For some of our functions, you will need a version of ffmpeg >= 0.4.1. On Mac machines, ffmpeg can be
installed via brew.

Chapter 1. Mac and Linux

CHAPTER 2

Windows

We recommend that Windows users install and use OpenSoundscape using Windows Subsystem for Linux, because
some of the machine learning and audio processing packages required by OpenSoundscape do not install easily on
Windows computers. Below we describe the typical installation method. This gives you access to a Linux operating
system (we recommend Ubuntu 20.04) in which to use Python and install and use OpenSoundscape. Using Ubuntu
20.04 is as simple as opening a program on your computer.

2.1 Get Ubuntu shell

If you don’t already use Windows Subsystem for Linux (WSL), activate it using the following:
* Search for the “Powershell” program on your computer
* Right click on “Powershell,” then click “Run as administrator’” and in the pop-up, allow it to run as administrator

¢ Install WSL2 (more information: https://docs.microsoft.com/en-us/windows/wsl/install-win10):

wsl ——install

* Restart your computer

Once you have WSL, follow these steps to get an Ubuntu shell on your computer:
* Open Windows Store, search for “Ubuntu” and click “Ubuntu 20.04 LTS”
* Click “Get”, wait for the program to download, then click “Launch”
* An Ubuntu shell will open. Wait for Ubuntu to install.
¢ Set username and password to something you will remember

* Run sudo apt update and type in the password you just set

opensoundscape, Release 0.6.2

2.2 Download Anaconda

We recommend installing OpenSoundscape in a package manager. We find that the easiest package manager for
new users is “Anaconda,” a program which includes Python and tools for managing Python packages. Below are
instructions for downloading Anaconda in the Ubuntu environment.

* Open this page and scroll down to the “Anaconda Installers” section. Under the Linux section, right click on the
link “64-Bit (x86) Installer” and click “Copy link”*

¢ Download the installer:
— Open the Ubuntu terminal

— Type in wget then paste the link you copied, e.g.: (the filename of your file may differ)

’wget https://repo.anaconda.com/archive/Anaconda3-2020.07-Linux-x86_64.sh

» Execute the downloaded installer, e.g.: (the filename of your file may differ)

’bash Anaconda3-2020.07-Linux-x86_64.sh

— Press ENTER, read the installation requirements, press Q, then type “yes” and press enter to install
— Wait for it to install
— If your download hangs, press CTRL+C, rm -rf ~/anaconda3 and try again

* Type “yes” to initialize conda

— If you skipped this step, initialize your conda installation: run source ~/anaconda3/bin/
activate and then after that command has run, conda init.

* Remove the downloaded file after installation, e.g. rm Anaconda3-2020.07-Linux-x86_64.sh
* Close and reopen terminal window to have access to the initialized Anaconda distribution

You can now manage packages with conda.

2.3 Install OpenSoundscape in virtual environment

* Create a Python 3.7 (or 3.8) conda environment for opensoundscape: conda create --name
opensoundscape pip python=3.7

¢ Activate the environment: conda activate opensoundscape
* Install opensoundscape using pip: pip install opensoundscape==0.6.2

If you see an error that says “No matching distribution found. ..”, your best bet is to use these commands to download
then install the package:

cd

git clone https://github.com/kitzeslab/opensoundscape.git
cd opensoundscape/

pip install

If you run into this error and you are on a Windows 10 machine:

6 Chapter 2. Windows

https://www.anaconda.com/products/individual

opensoundscape, Release 0.6.2

(opensoundscape_environment) username@computername:~$ pip install opensoundscape==0.6.
,4‘2
WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None,

—status=None)) after connection broken by 'NewConnectionError ('<pip._vendor.urllib3.
—connection.HTTPSConnection object at 0x7£7603c5da90>: Failed to establish a new_
—sconnection: [Errno -2] Name or service not known')': /simple/opensoundscape/

You may be able to solve it by going to System Settings, searching for “Proxy Settings,” and beneath “Automatic proxy
setup,” turning “Automatically detect settings” OFF. Restart your terminal for changes to take effect. Then activate the
environment and install OpenSoundscape using pip.

2.3. Install OpenSoundscape in virtual environment 7

opensoundscape, Release 0.6.2

8 Chapter 2. Windows

CHAPTER 3

Contributors

Contributors and advanced users can use this workflow to install OpenSoundscape using Poetry. Poetry installation
allows direct use of the most recent version of the code. This workflow allows advanced users to use the newest
features in OpenSoundscape, and allows developers/contributors to build and test their contributions.

3.1 Poetry installation

¢ Install poetry

* Create a new virtual environment for the OpenSoundscape installation. If you are using Anaconda, you can
create a new environment with conda create -n opso-dev python==3.8 where opso—dev is the
name of the new virtual environment. Use conda activate opso-dev to enter the environment to work
on OpenSoundscape and conda deactivate opso-dev to return to your base Python installation. If you
are not using Anaconda, other packages such as virtualenv should work as well. Ensure that the Python
version is compatible with the current version of OpenSoundscape.

* Internal Contributors: Clone this github repository to your machine: git clone https://github.
com/kitzeslab/opensoundscape.git

» External Contributors: Fork this github repository and clone the fork to your machine
* Ensure you are in the top-level directory of the clone
» Switch to the development branch of OpenSoundscape: git checkout develop

¢ Install OpenSoundscape using poetry install. This will install OpenSoundscape and its dependencies
into the opso-dev virtual environment. By default it will install OpenSoundscape in develop mode, so that
updated code in the respository can be imported without reinstallation.

— If you are on a Mac and poetry install fails to install numba, contact one of the developers for help
troubleshooting your issues.

* Install the £ fmpeg dependency. On a Mac, £ fmpeg can be installed using Homebrew.

* Run the test suite to ensure that everything installed properly. From the top-level directory, run the command
pytest.

https://poetry.eustace.io/docs/#installation

opensoundscape, Release 0.6.2

3.2 Contribution workflow

3.2.1 Contributing to code

Make contributions by editing the code in your repo. Create branches for features by starting with the develop
branch and then running git checkout -b feature_branch_name. Once work is complete, push the new
branch to remote using git push -u origin feature_branch_name. To merge a feature branch into the
development branch, use the GitHub web interface to create a merge or a pull request. Before opening a PR, do the
following to ensure the code is consistent with the rest of the package:

* Run the test suite using pytest

* Format the code with black style (from the top level of the repo): black

3.2.2 Contributing to documentation

Build the documentation using sphinx-build docs docs/_build

10 Chapter 3. Contributors

CHAPTER 4

Jupyter

To use OpenSoundscape in JupyterLab or in a Jupyter Notebook, you may either start Jupyter from within your
OpenSoundscape virtual environment and use the “Python 3” kernel in your notebooks, or create a separate “Open-
Soundscape” kernel using the instructions below

The following steps assume you have already used your operating system-specific installation instructions to create a
virtual environement containing OpenSoundscape and its dependencies.

4.1 Use virtual environment

* Activate your virtual environment
* Start JupyterLab or Jupyter Notebook from inside the conda environment, e.g.: jupyter lab
* Copy and paste the JupyterLab link into your web browser

With this method, the default “Python 3” kernel will be able to import opensoundscape modules.

4.2 Create independent kernel

Use the following steps to create a kernel that appears in any notebook you open, not just notebooks opened from your
virtual environment.

* Activate your virtual environment to have access to the ipykernel package

¢ Create ipython kernel with the following command, replacing ENV_NAME with the name of your OpenSound-
scape virtual environment.

python -m ipykernel install --user —--name=ENV_NAME --display-name=OpenSoundscape

» Now when you make a new notebook on JupyterLab, or change kernels on an existing notebook, you can choose
to use the “OpenSoundscape” Python kernel

11

opensoundscape, Release 0.6.2

Contributors: if you include Jupyter’s aut oreload, any changes you make to the source code installed via poetry
will be reflected whenever you run the $autoreload line magic in a cell:

%load_ext autoreload
%autoreload

Chapter 4. Jupyter

CHAPTER B

Audio and spectrograms

This tutorial demonstrates how to use OpenSoundscape to open and modify audio files and spectrograms.

Audio files can be loaded into OpenSoundscape and modified using its Audio class. The class gives access to modifi-
cations such as trimming short clips from longer recordings, splitting a long clip into multiple segments, bandpassing
recordings, and extending the length of recordings by looping them. Spectrograms can be created from Audio ob-
jects using the Spectrogram class. This class also allows useful features like measuring the amplitude signal of a
recording, trimming a spectrogram in time and frequency, and converting the spectrogram to a saveable image.

To download the tutorial as a Jupyter Notebook, click the “Edit on GitHub” button at the top right of the tutorial. Using
it requires that you install OpenSoundscape and follow the instructions for using it in Jupyter.

For the sake of example, we will downlaod a file from the Kitzes Lab box using the code below, and use it throughout
the tutorial. To use your own file for the following examples, change the string assigned to audio_filename to
any audio file on your computer.

: import subprocess

'https://pitt.box.com/shared/static/z73eked7quhlt2pp93axzrrpgbwwydx0 .

subprocess.run(['curl',
—wav',
'-L', '"-o', '"lmin_audio.wav'])
audio_filename = './Imin_audio.wav'
% Total % Received % Xferd Average Speed
Dload Upload
0 0 0 0 0 0 0
0 0 0 0 0 0 0
100 7 0 7 0 0 5
100 3750k 100 3750k 0 0 1245k

5.1 Quick start

0

0
0
0

Time

Total

0:
0:

Time
Spen

00:
00:

t

01
03

Time Current
Left Speed

——:i-—:-— 4157k

Import the Audio and Spectrogram classes from OpenSoundscape. (For more information about Python imports,

review this article.)

13

https://medium.com/code-85/a-beginners-guide-to-importing-in-python-bb3adbbacc2b

[10]:

opensoundscape, Release 0.6.2

Iimport Audio and Spectrogram classes from OpenSoundscape
from opensoundscape.audio import Audio
from opensoundscape.spectrogram import Spectrogram

These classes provide a variety of tools to load and manipulate audio and spectrograms. The code below demonstrates
a basic pipeline:

* load an audio file
¢ generate a spectrogram with default parameters
* create a 224px x 224px-sized image of the spectrogram

* save the image to a file

from pathlib import Path
Settings
image_shape = (224, 224) # (height, width) not (width, height)

image_save_path = Path('./saved_spectrogram.png')

Load audio file as Audio object
audio = Audio.from_file (audio_filename)

Create Spectrogram object from Audio object
spectrogram = Spectrogram.from_audio (audio)

Convert Spectrogram object to PIL Image
image = spectrogram.to_image (shape=image_shape)

Save image to file
image.save (image_save_path)

The above function calls could even be condensed to a single line:

Spectrogram. from_audio (Audio.from_file (audio_filename)) .to_image (shape=image_shape) .
—save (image_save_path)

Clean up by deleting the spectrogram saved above.

image_save_path.unlink ()

5.2 Audio loading

The Audio class in OpenSoundscape allows loading and manipulation of audio files.

5.2.1 Load .wavs

Load the example audio from file:

audio_object = Audio.from_file(audio_filename)

14 Chapter 5. Audio and spectrograms

[11]:

[12]:

[137]:

[13]:

opensoundscape, Release 0.6.2

5.2.2 Load .mp3s

OpenSoundscape uses a package called 1ibrosa to help load audio files. Librosa automatically supports . wav files,
but loading . mp3 files requires that you also install £ fmpeg or an alternative. See Librosa’s installation tips for more
information.

5.2.3 load a segment of a file
We can directly load a section of a .wav file very quickly (even if the audio file is large) using the of fset and
duration parameters.

For example, let’s load 1 second of audio from 2.0-3.0 seconds:

audio_segment = Audio.from_file (audio_filename,offset=2.0,duration=1.0)
audio_segment.duration ()

1.0

5.2.4 Audio properties

The properties of an Audio object include its samples (the actual audio data) and the sample rate (the number of audio
samples taken per second, required to understand the samples). After an audio file has been loaded, these properties
can be accessed using the samples and sample_rate attributes, respectively.

print (f"How many samples does this audio object have? {len (audio_object.samples) }")
print (f"What is the sampling rate? {audio_object.sample_rate}")

How many samples does this audio object have? 1920000
What is the sampling rate? 32000

5.2.5 Resample audio during load

By default, an audio object is loaded with the same sample rate as the source recording.

The sample_rate parameter of Audio.from_file allows you to re-sample the file during the creation of the
object. This is useful when working with multiple files to ensure that all files have a consistent sampling rate.

Let’s load the same audio file as above, but specify a sampling rate of 22050 Hz.

audio_object_resample = Audio.from_file(audio_filename, sample_rate=22050)
audio_object_resample.sample_rate

22050

For other options when loading audio objects, see the Audio.from_file() documentation.

5.3 Audio methods

The Audio class gives access to a variety of tools to change audio files, load them with special properties, or get
information about them. Various examples are shown below.

For a description of the entire Audio object API, see the API documentation.

5.3. Audio methods 15

https://github.com/librosa/librosa#Hints-for-the-installation
api/audio.html#opensoundscape.audio.Audio.from_file
api/audio.html

[16]:

[17]:

opensoundscape, Release 0.6.2

5.3.1 NOTE: Out-of-place operations

Functions that modify Audio (and Spectrogram) objects are “out of place”, meaning that they return a new,
modified instance of Audio instead of modifying the original instance. This means that running a line

’audio_object.resample(22050) # WRONG!

will not change the sample rate of audio_object! If your goal was to overwrite audio_object with the new,
resampled audio, you would instead write

audio_object = audio_object.resample (22050)

5.3.2 Save audio to file

Opensoundscape currently supports saving Audio objects to . wav formats only. It does not currently support saving
metadata (tags) along with wav files - only the samples and sample rate will be preserved in the file.

: audio_object.save ('./my_audio.wav')

clean up: delete saved file

: from pathlib import Path

Path('./my_audio.wav') .unlink ()

5.3.3 Get duration

The .duration () method returns the length of the audio in seconds

length = audio_object.duration ()
print (length)

60.0

5.3.4 Trim

The . trim () method extracts audio from a specified time period in seconds (relative to the start of the audio object).

trimmed audio_object.trim (0, 5)
trimmed.duration ()

1: 5.0

5.3.5 Split Audio into clips
The . split () method divides audio into even-lengthed clips, optionally with overlap between adjacent clips (default
is no overlap). See the function’s documentation for options on how to handle the last clip.

The function returns a list containing Audio objects for each clip and a DataFrame giving the start and end times of
each clip with respect to the original file.

16 Chapter 5. Audio and spectrograms

opensoundscape, Release 0.6.2

split

#split into 5-second clips with no overlap between adjacent clips
clips, clip_df = audio_object.split (clip_duration=5,clip_overlap=0,final_clip=None)

#check the duration of the Audio object in the first returned element
print (f"duration of first clip: clips[0] .duration() /")

print (f"head of clip_df")
clip_df.head(3)

duration of first clip: 5.0
head of clip_df

start_time end_time

0 0.0 5.0
1 5.0 10.0
2 10.0 15.0

split with overlap

if we want overlap between consecutive clips

Note that a negative “overlap” value would leave gaps between consecutive clips.

_, clip_df = audio_object.split (clip_duration=5,clip_overlap=2.5,final_clip=None)
print (f"head of clip_df")
clip_df.head()

head of clip_df

start_time end_time

0 0.0 5.0
1 2.5 7.5
2 5.0 10.0
3 7.5 12.5
4 10.0 15.0

split and save

The Audio.split_and_save () method splits audio into clips and immediately saves them to files in a specified
location. You provide it with a naming prefix, and it will add on a suffix indicating the start and end times of the
clip(eg _5.0-10.0s.wav). It returns just a DataFrame with the paths and start/end times for each clip (it does not
return Audio objects).

The splitting options are the same as . split () : clip_duration, clip_overlap, and final_clip

#split into 5-second clips with no overlap between adjacent clips
Path('./temp_audio') .mkdir (exist_ok=True)
clip_df = audio_object.split_and_save (
destination="'./temp_audio',
prefix='audio_clip_',
clip_duration=5,
clip_overlap=0,
final_clip=None

(continues on next page)

5.3. Audio methods 17

[21]:

[22]

opensoundscape, Release 0.6.2

print (f"head of clip_df")
clip_df.head()

head of clip_df

file

./temp_audio/audio_clip__0.0s_5.0s.wav

./temp_audio/audio_clip__5.0s_10.0s.wav
./temp_audio/audio_clip_ 10.0s_15.0s.wav
./temp_audio/audio_clip__15.0s_20.0s.wav
./temp_audio/audio_clip__20.0s_25.0s.wav

start_time

0.
5.
10.
15.
20.

O O O O O

end_time

5.
10.
15.
20.
25.

O O O o o

(continued from previous page)

The folder temp_audio should now contain 12 5-second clips created from the 60-second audio file.

clean up: delete temp folder of saved audio clips

from shutil import rmtree
rmtree ('./temp_audio')

split_and_save dry run

we can use the dry_ run=True option to produce only the clip_df but not actually process the audio. this is useful as
a quick test to see if the function is behaving as expected, before doing any (potentially slow) splitting on huge audio

files.

Just for fun, we’ll use an overlap of -5 in this example (5 second gap between each consecutive clip)

This function returns a DataFrame of clips, but does not actually process the audio files or write any new files.

clip_df = audio_object.split_and_save (
destination="'./temp_audio',

prefix='audio_clip_"',
clip_duration=5,
clip_overlap=-5,
final_clip=None,
dry_run=True,

)

clip_df

file

./temp_audio/audio_clip_ 0.0s_5.0s.wav

./temp_audio/audio_clip__10.
./temp_audio/audio_clip__20.
./temp_audio/audio_clip__30.
./temp_audio/audio_clip__40.
./temp_audio/audio_clip__50.

5.3.6 Extend and loop

0s_15.
0s_25.
0s_35.
O0s_45.
0s_55.

Os.
Os.
Os.
Os.
Os.

wav
wav
wav
wav
wav

start_time

10.
20.
30.
40.
50.

O O O O O O

end_time

15.
25.
35.
45.
55.

O O O O O o

The .extend () method extends an audio file to a desired length by adding silence to the end.

The . 1loop () method extends an audio file to a desired length (or number of repetitions) by looping the audio.

extend() example: create an Audio object twice as long as the original, extending with silence (0 valued samples)

18

Chapter 5. Audio and spectrograms

opensoundscape, Release 0.6.2

[23]: import matplotlib.pyplot as plt

create an audio object twice as long, extending the end with silence (zero-values)
extended = trimmed.extend (trimmed.duration () * 2)

print (f"duration of original clip: {trimmed.duration() /")
print (f"duration of extended clip: {extended.duration() }")
print (f"samples of extended clip:")

plt.plot (extended.samples)

plt.show ()

duration of original clip: 5.0
duration of extended clip: 10.0
samples of extended clip:

02 A

01~

0.0 A

-0.1

—0.2 A1

T T T T T T T
0 50000 100000 150000 200000 250000 300000

Looping example: create an audio object 1.5x as long, extending the end by looping

[24]: looped = trimmed.loop (trimmed.duration() = 1.5)
print (looped.duration ())
plt.plot (looped.samples)

7.5

[24]: [<matplotlib.lines.Line2D at 0x7f£c0346abf90>]

02

01+

0.0 4

-0.1

—0.2 A

T T T T T
0 50000 100000 150000 200000 250000

5.3. Audio methods 19

[21]:

[21]:

opensoundscape, Release 0.6.2

create an audio object that loops the original object 5 times and plot the samples

looped = trimmed.loop (n=5)
print (looped.duration())
plt.plot (looped.samples)

25.0

[<matplotlib.lines.Line2D at 0x7fdb48afb310>]

02 A

01 A

0.0

—0.1 4

-0.2 A

T T T T T T T T T
0 100000 200000300000 400000 500000 600000 700000 B0O000

5.3.7 Resample

The .resample () method resamples the audio object to a new sampling rate (can be lower or higher than the

original sampling rate)

resampled = trimmed.resample (sample_rate=48000)
resampled.sample_rate

48000

5.3.8 Generate a frequency spectrum

The . spectrum () method provides an easy way to compute a Fast Fourier Transform on an audio object to measure

its frequency composition.

calculate the fft
fft_spectrum, frequencies = trimmed.spectrum()

#plot settings
from matplotlib import pyplot as plt

plt.rcParams|['figure.figsize']l=[15,5] #for big visuals
%config InlineBackend.figure_format = 'retina'
plot

plt.plot (frequencies, £fft_spectrum)
plt.ylabel ('Fast Fourier Transform (V*%2/Hz)"')
plt.xlabel ('Frequency (Hz)'")

20

Chapter 5. Audio and spectrograms

[26] :

[27]:

[27]:

opensoundscape, Release 0.6.2

/Users/SML161/opt/miniconda3/envs/opso/lib/python3.7/site-packages/matplotlib_inline/
—config.py:75: DeprecationWarning: InlineBackend._figure_format_changed is_,
—deprecated in traitlets 4.1: use (@observe and @unobserve instead.

def _figure_format_changed(self, name, old, new):

Text (0.5, 0, 'Frequency (Hz)"')

0.0008 A

0.0006

0.0004

Fast Fourier Transform (V**2/Hz)

0.0002 A

0.0000 A

T T T T T T T T
o] 2000 4000 6000 8000 10000 12000 14000 16000
Frequency (Hz)

5.3.9 Bandpass

Bandpass the audio file to limit its frequency range to 1000 Hz to 5000 Hz. The bandpass operation uses a Butterworth
filter with a user-provided order.

apply a bandpass filter

bandpassed = trimmed.bandpass(low_f = 1000, high_f = 5000, order=9)
calculate the bandpassed audio's spectrum

fft_spectrum, frequencies = bandpassed.spectrum/ ()

plot

print ('spectrum after bandpassing the audio:')
plt.plot (frequencies, fft_spectrum)

plt.ylabel ('Fast Fourier Transform (Vx%x2/Hz)"')
plt.xlabel ('Frequency (Hz)")

spectrum after bandpassing the audio:

Text (0.5, 0, 'Frequency (Hz)"')

5.3. Audio methods 21

[28]:

[29]:

opensoundscape, Release 0.6.2

0.0008

0.0006

0.0004

Fast Fourier Transform (V*¥2/Hz)

0.0002 A

0.0000 A

o] 2000 4000 6000 8000 10000 12000 14000 16000
Frequency (Hz)

5.4 Spectrogram creation

5.4.1 Load spectrogram

A Spectrogram object can be created from an audio object using the from_audio () method.

audio_object = Audio.from_file(audio_filename)
spectrogram_object = Spectrogram.from_audio (audio_object)

Spectrograms can also be loaded from saved images using the from_file () method.

5.4.2 Spectrogram properties

To check the time and frequency axes of a spectrogram, you can look at its t imes and frequencies attributes.
The t imes attribute is the list of the spectrogram windows’ centers’ times in seconds relative to the beginning of the
audio. The frequencies attribute is the list of frequencies represented by each row of the spectrogram. These are
not the actual values of the spectrogram — just the values of the axes.

spec = Spectrogram.from_audio (Audio.from_file (audio_filename))
print (f'the first few times: {spec.times[0:5]}")
print (f'the first few frequencies: {spec.frequencies[0:5]}")

the first few times: [0.008 0.016 0.024 0.032 0.04]
the first few frequencies: [0. 62.5 125. 187.5 250.]

5.4.3 Plot spectrogram

A Spectrogram object can be visualized using its plot () method.

audio_object = Audio.from_file (audio_filename)
spectrogram_object = Spectrogram.from_audio (audio_object)
spectrogram_object.plot ()

22 Chapter 5. Audio and spectrograms

opensoundscape, Release 0.6.2

16000 T
14000 A
12000 T
10000 1

8000 A

frequency (Hz)

6000
4000 1

2000 A

T T u T T
10 20 30 40 50
time (sec)

5.4.4 Spectrogram parameters

Spectrograms are created using “windows.” A window is a subset of consecutive samples of the original audio that is
analyzed to create one pixel in the horizontal direction (one “column’) on the resulting spectrogram. The appearance
of a spectrogram depends on two parameters that control the size and spacing of these windows:

Samples per window, window_samples
This parameter is the length (in audio samples) of each spectrogram window. Choosing the value for
window_samples represents a trade-off between frequency resolution and time resolution:

* Larger value for window_samples —> higher frequency resolution (more rows in a single spectrogram col-
umn)

e Smaller value for window_samples —> higher time resolution (more columns in the spectrogram per second)

Overlap of consecutive windows, overlap_samples

overlap_samples: this is the number of audio samples that will be re-used (overlap) between two consecutive
Specrogram windows. It must be less than window_samples and greater than or equal to zero. Zero means no
overlap between windows, while a value of window_samples/2 would give 50% overlap between consecutive
windows. Using higher overlap percentages can sometimes yield better time resolution in a spectrogram, but will take
more computational time to generate.

Relationship

When there is zero overlap between windows, the number of columns per second is equal to the size in Hz of each
spectrogram row. Consider the relationship between time resolution (columns in the spectrogram per second) and
frequency resolution (rows in a given frequency range) in the following example:

* Let sample_rate=48000, window_samples=480, and overlap_samples=0
» Each window (“spectrogram column”) represents 480/48000 = 1/100 = 0.01 seconds of audio

e There will be 1/ (length of window in seconds) = 1/0.01 = 100 columns in the spectrogram
per second.

5.4. Spectrogram creation 23

[32]:

opensoundscape, Release 0.6.2

* Each pixel will span 100 Hz in the frequency dimension, i.e., the lowest pixel spans 0-100 Hz, the next lowest
100-200 Hz, then 200-300 Hz, etc.

If window_samples=4800, then the spectrogram would have better time resolution (each window represents only

4800/48000 = 0.001s of audio) but worse frequency resolution (each row of the spectrogram would represent 1000 Hz
in the frequency range).

As an example, let’s create two spectrograms, one with hight time resolution and another with high frequency resolu-
tion.

: # Load audio

audio = Audio.from_file(audio_filename, sample_rate=22000).trim(0,5)

Create a spectrogram with high time resolution

Using window_samples=55and overlap_samples=0 gives 55/22000 = 0.0025 seconds of audio per window,
or 1/0.0025 = 400 windows per second. Each spectrogram pixel spans 400 Hz.

spec = Spectrogram.from audio (audio, window_samples=55, overlap_samples=0)
spec.plot ()

H”"' A w, l'r” mn . l'w o

10000

il il

’ ‘ "‘“" “u‘“ ‘\ 1 L V\‘\i‘\“ |‘ ‘ 1"" | | ‘ HW\“‘“\ ‘I\ I |‘ m mH
s il u
g i M B ik w‘ . W u“.i....\.r..t.':.l“nJz...u..'ma.tﬂ i ""““’ i

¢} IHIIH HH\III\“\ il IHJHIII‘\HHHIH'I IHIHIIHHHH‘I\IJIHIII 11 M\I ‘I\H HI‘\] ‘ ‘ i1 m II“IIIIHI'HMHI \JI\I

frequency (Hz)

(11§ uh\ I“

time (sec)

Create a spectrogram with high time frequency resolution

Using window_samples=1100 and overlap_samples=0 gives 1100/22000 = 0.05 seconds of audio per win-
dow, or 1/0.05 = 20 windows per second. Each spectrogram pixel spans 20 Hz.

: spec = Spectrogram.from_audio (audio, window_samples=1100, overlap_samples=0)

spec.plot ()

10000

frequency (Hz)

time (sec)

24

Chapter 5. Audio and spectrograms

opensoundscape, Release 0.6.2

For other options when loading spectrogram objects from audio objects, see the from_audio () documentation.

5.5 Spectrogram methods

The tools and features of the spectrogram class are demonstrated here, including plotting; how spectrograms can
be generated from modified audio; saving a spectrogram as an image; customizing a spectrogram; trimming and
bandpassing a spectrogram; and calculating the amplitude signal from a spectrogram.

5.5.1 Plot

A Spectrogram object can be plotted using its plot () method.

: audio_object = Audio.from_file(audio_filename)

spectrogram_object = Spectrogram.from_audio (audio_object)
spectrogram_object.plot ()

16000

14000 A

12000 1

10000 1

8000 A

frequency (Hz)

6000 |

4000 1

time (sec)

5.5.2 Load modified audio

Sometimes, you may wish to trim or modify an audio object before creating a spectrogram. In this case, you should
first modify the Audio object, then call Spectrogram. from_audio ().

For example, the code below demonstrates creating a spectrogram from a 5 second long trim of the audio object.
Compare this plot to the plot above.

Trim the original audio
trimmed = audio_object.trim(0, 5)

Create a spectrogram from the trimmed audio
spec = Spectrogram.from_audio (trimmed)

Plot the spectrogram
spec.plot ()

5.5. Spectrogram methods 25

[36]:

[37]:

[38]:

opensoundscape, Release 0.6.2

16000

14000 A

12000 1

e

-

o e v |

10000 1

8000 A

frequency (Hz)

6000 |
40001 |

2000

time (sec)

5.5.3 Save spectrogram to file

To save the created spectrogram, first convert it to an image. It will no longer be an OpenSoundscape Spectrogram
object, but instead a Python Image Library (PIL) Image object.

print ("Type of " spectrogram_audio’ (before conversion):", type (spectrogram_object))
spectrogram_image = spectrogram_object.to_image ()

print ("Type of "spectrogram_image (after conversion):", type (spectrogram_image))
Type of "spectrogram_audio® (before conversion): <class 'opensoundscape.spectrogram.
—Spectrogram'>

Type of "“spectrogram_image’ (after conversion): <class 'PIL.Image.Image'>

Save the PIL Image using its save () method, supplying the filename at which you want to save the image.

image_path = Path('./saved_spectrogram.png')
spectrogram_image.save (image_path)

To save the spectrogram at a desired size, specify the image shape when converting the Spectrogram to a PIL
Image.

image_shape = (512,512)
large_image_path = Path('./saved_spectrogram_ large.png')
spectrogram_image = spectrogram_object.to_image (shape=image_shape)

spectrogram_image.save (large_image_path)

Delete the files created above.

image_path.unlink ()
large_image_path.unlink ()

5.5.4 Trim

Spectrograms can be trimmed in time using t rim (). Trim the above spectrogram to zoom in on one vocalization.

spec_trimmed = spec.trim(l.7, 3.9)
spec_trimmed.plot ()

26 Chapter 5. Audio and spectrograms

[41]:

[42]:

opensoundscape, Release 0.6.2

16000

14000 { -
12000 1
10000 s 7

8000 A

frequency (Hz)

6000 1
4000 1-

2000 A

1.75 2.00 225 2.50 275 3.00 3.25 3.50 3.75
time (sec)

5.5.5 Bandpass
Spectrograms can be trimmed in frequency using bandpass (). This simply subsets the Spectrogram array rather
than performing an audio-domain filter.

For instance, the vocalization zoomed in on above is the song of a Black-and-white Warbler (Mniotilta varia), one of
the highest-frequency bird songs in our area. Set its approximate frequency range.

baww_low_freqg = 5500
baww_high_freq = 9500

Bandpass the above time-trimmed spectrogram in frequency as well to limit the spectrogram view to the vocalization
of interest.

spec_bandpassed = spec_trimmed.bandpass (baww_low_freq, baww_high_freq)
spec_bandpassed.plot ()

9500 A

9000 A

8500 A

frequency (Hz)
~ @
w (=]
o o
o o
]

~
=}
=}
o

6500 1

6000] Il |

5500 1~
1.75

time (sec)

5.5.6 Calculate amplitude signal

The .amplitude () method sums the columns of the spectrogram to create a one-dimensional amplitude versus
time vector.

Note: the amplitude of the Spectrogram (and FFT) has units of power (V**2) over frequency (Hz)

5.5. Spectrogram methods 27

[44]:

[45] :

opensoundscape, Release 0.6.2

calculate amplitude signal
high_freq amplitude = spec_trimmed.amplitude ()

plot

from matplotlib import pyplot as plt

plt.plot (spec_trimmed.times,high_freq amplitude)
plt.xlabel ('time (sec)')

plt.ylabel ('amplitude"')

plt.show ()

—18500 1

—18750 A

—19000 1

—19250 4

amplitude

—19500 1

—19750 1

—20000 A

—20250 1

—20500 -

2.0 25 3.0 35 4.0
time (sec)

It is also possible to get the amplitude signal from a restricted range of frequencies, for instance, to look at the
amplitude in the frequency range of a species of interest. For example, get the amplitude signal from the 8000 Hz to
8500 Hz range of the audio (displayed below):

spec_bandpassed = spec_trimmed.bandpass (8000, 8500)
spec_bandpassed.plot ()

8500 1

8400 A

8300 1

8200 1

frequency (Hz)

8100 1

8000 A I

1.75 2.00

275 3.00 3.25 3.50 3.75
time (sec)

Get and plot the amplitude signal of only 8-8.5 kHz.

Get amplitude signal
high_freq amplitude = spec_trimmed.amplitude (freq _range=[8000,8500])

Get amplitude signal
high_freq amplitude = spec_trimmed.amplitude (freq range=[8000,8500])

Plot signal

(continues on next page)

28 Chapter 5. Audio and spectrograms

opensoundscape, Release 0.6.2

(continued from previous page)

plt.plot (spec_trimmed.times, high_freq amplitude)
plt.xlabel ('time (sec)')

plt.ylabel ('amplitude')

plt.show ()

—450

—500 1

—550 4

—600 7

amplitude

—650 1

=700 4

=750 1

—800 -

2.0 25 3.0 35 4.0
time (sec)

Amplitude signals like these can be used to identify periodic calls, like those by many species of frogs. A pulsing-call
identification pipeline called RIBBIT is implemented in OpenSoundscape.

Amplitude signals may not be the most reliable method of identification for species like birds. In this case, it is possible
to create a machine learning algorithm to identify calls based on their appearance on spectrograms.

The developers of OpenSoundscape have trained machine learning models for over 500 common North American bird
species; for examples of how to download demonstration models, see the “Prediction with pretrained models” tutorial.

5.5.7 clean up

#delete the file we downloaded for the tutorial
Path('Ilmin audio.wav') .unlink ()

5.5. Spectrogram methods 29

RIBBIT_pulse_rate_demo.html

opensoundscape, Release 0.6.2

30 Chapter 5. Audio and spectrograms

CHAPTER O

Manipulating audio annotations

This notebook demonstrates how to use the annotat ions module of OpenSoundscape to
* load annotations from Raven files
e create a set of one-hot labels corresponding to fixed-length audio clips
* split a set of labeled audio files into clips and create labels dataframe for all clips

The audio recordings used in thise notebook were recorded by Andrew Spencer and are available under a Creative
Commons License (CC BY-NC-ND 2.5) from xeno-canto.org. Annotations were performed in Raven Pro software by
our team.

from opensoundscape.audio import Audio
from opensoundscape.spectrogram import Spectrogram
from opensoundscape.annotations import BoxedAnnotations

import numpy as np
import pandas as pd

from glob import glob

from matplotlib import pyplot as plt

plt.rcParams|['figure.figsize']=[15,5] #for big visuals
%config InlineBackend.figure_format = 'retina'

6.1 download example files

Run the code below to download a set of example audio and raven annotations files for this tutorial.

import subprocess

subprocess.run(['curl', 'https://pitt.box.com/shared/static/
onzdzwwnyr3tkr6ig6esltwidb7jg3ptfed.gz', '-L', '-o', 'gwwa_audio_and_raven_annotations.
—tar.gz']l) # Download the data

subprocess.run(["tar","-xz£f", "gwwa_audio_and_raven_annotations.tar.gz"]) # Unzip the,
tar

(’
2 o A e
VVVVV a z file

Q

(continues on next page)

31

https://creativecommons.org/licenses/by-nc-nd/2.5/

[3]:

[4]:

opensoundscape, Release 0.6.2

(continued from previous page)

subprocess.run(["rm", "gwwa_audio_and_raven_annotations.tar.gz"]) # Remove the file_,
—after its contents are unzipped

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

0 0 0 0 0 0 0 @ ==8==8== —=—=g=—g=— =—=—=g=—g=< 0

0 0 0 0 0 0 0 @ ==8==8== ==g==g== ==g==3== 0
100 7 0 7 0 0 4 @ ==g==8== 0300801 ==g==g== 0
100 1036k 100 1036k 0 0 466k 0 0:00:02 0:00:02 ——:——:—— 2894k

CompletedProcess (args=['rm', 'gwwa_audio_and_raven_annotations.tar.gz'], returncode=0)

6.1.1 Load a single Raven annotation table from a txt file

We can use the BoxedAnnotation class’s from_raven_file method to load a Raven txt file into OpenSoundscape.
This table contains the frequency and time limits of rectangular “boxes” representing each annotation that was created
in Raven.

Note that we need to specify the name of the column containing annotations, since it can be named anything in Raven.
The column will be renamed to “annotation”.

This table looks a lot like what you would see in the Raven interface.

specify an audio file and corresponding raven annotation file

audio_file = './gwwa_audio_and_raven_annotations/GWWA_XC/13738.mp3"

annotation_file = './gwwa_audio_and_raven_annotations/GWWA_XC_AnnoTables/13738.Table.
—l.selections.txt'

let’s look at a spectrogram of the audio file to see what we’re working with

Spectrogram. from_audio (Audio.from_file (audio_file)) .plot ()

20000 A

17500 A

15000 A

12500 A

10000 |

frequency (Hz)

7500

5000

2500

10 20 30 40 50
time (sec)

now, let’s load the annotations from the Raven annotation file

#create an object from Raven file
annotations = BoxedAnnotations.from_raven_file (annotation_file,annotation_column=
—'Species')

#inspect the object's .df attribute, which contains the table of annotations
annotations.df.head()

32 Chapter 6. Manipulating audio annotations

[10]:

opensoundscape, Release 0.6.2

Selection View Channel start_time end_time low_f high_f \
0 1 Spectrogram 1 1 0.459636 2.298182 4029.8 17006.4
1 2 Spectrogram 1 6.705283 8.246417 4156.6 17031.7
2 3 Spectrogram 1 1 13.464641 15.005775 3903.1 17082.4
3 4 Spectrogram 1 1 20.128208 21.601748 4055.2 16930.3
4 5 Spectrogram 1 1 26.047590 27.521131 4207.2 17057.1

annotation Notes

0 GWWA_song NaN
1 GWWA_song NaN
2 ? NaN
3 GWWA_song NaN
4 GWWA_song NaN

we could instead choose to load it with only the necessary columns, plus the “Notes” column

annotations = BoxedAnnotations.from raven_file (annotation_file, annotation_column=
—'Species',keep_extra_columns=['Notes'])
annotations.df.head()

start_time end_time low_f high_f annotation Notes
0 0.459636 2.298182 4029.8 17006.4 GWWA_song NaN
1 6.705283 8.246417 4156.6 17031.7 GWWA_song NaN
2 13.464641 15.005775 3903.1 17082.4 ? NaN
3 20.128208 21.601748 4055.2 16930.3 GWWA_song NaN
4 26.047590 27.521131 4207.2 17057.1 GWWA_song NaN

6.1.2 Convert or correct annotations

We can provide a DataFrame (e.g., from a .csv file) or a dictionary to convert original values to new values.

Let’s load up a little csv file that specifies a set of conversions we’d like to make. The csv file should have two columns,
but it doesn’t matter what they are called. If you create a table in Microsoft Excel, you can export it to a .csv file to
use it as your conversion table.

conversion_table = pd.read_csv('./gwwa_audio_and_raven_annotations/conversion_table.
—csv')
conversion_table

original new

0 gwwa_song gwwa

alternatively, we could simply write a Python dictionary for the conversion table. For instance:

conversion_table = {
"GWWA_song":"GWWA",
"?":np.nan

now, we can apply the conversions in the table to our annotations.

This will create a new BoxedAnnotations object rather than modifying the original object (“out of place operation”)

annotations_corrected = annotations.convert_ labels (conversion_table)
annotations_corrected.df

6.1. download example files 33

[11]:

opensoundscape, Release 0.6.2

start_time end_time low_f high_f annotation Notes
0 0.459636 2.298182 4029.8 17006.4 GWWA NaN
1 6.705283 8.246417 4156.6 17031.7 GWWA NaN
2 13.464641 15.005775 3903.1 17082.4 NaN NaN
3 20.128208 21.601748 4055.2 16930.3 GWWA NaN
4 26.047590 27.521131 4207.2 17057.1 GWWA NaN
5 33.121946 34.663079 4207.2 17082.4 GWWA NaN
6 42.967925 44.427946 4181.9 17057.1 GWWA NaN
7 52.417508 53.891048 4232.6 16930.3 GWWA NaN

6.2 View a subset of annotations

Specify a list of classes to include in the subset
for example, we can subset to only annotations marked as ‘?’

classes_to_keep = ['?"]
annotations_only_unsure = annotations.subset (classes_to_keep)
annotations_only_unsure.df

start_time end_time low_f high_f annotation Notes
2 13.464641 15.005775 3903.1 17082.4 ? NaN

6.3 saving annotations to Raven-compatible file

We can always save our BoxedAnnotations object to a Raven-compatible txt file, which can be opened in Raven along
with an audio file just like the files Raven creates itself. You must specify a path for the save file that ends with . t xt.

annotations_only_unsure.to_raven_file('./gwwa_audio_and_raven_annotations/13738_
—unsure.txt')

6.3.1 Splitting annotations along with audio

Often, we want to train or validate models on short audio segments (e.g., 5 seconds) rather than on long files (e.g., 2
hours).

We can accomplish this in three ways:

(1) Split the annotations (.one_hot_labels_1like ()) using the DataFrame returned by Audio.split ()
(this dataframe includes the start and end times of each clip)

(2) Create a dataframe of start and end times, and split the audio accordingly

(3) directly split the labels with .one_hot_clip_labels (), using splitting parameters that match Au-
dio.split()

All three methods are demonstrated below.

6.4 1. Split Audio object, then split annotations to match

After splitting audio with audio.split(), we’ll use BoxedAnnotation’s one_hot_labels_like () function to ex-
tract the labels for each audio clip. This function requires that we specify the minimum overlap of the label (in

34 Chapter 6. Manipulating audio annotations

[15]:

[16]:

opensoundscape, Release 0.6.2

seconds) with the clip for the clip to be labeled positive. We also specify the list of classes for one-hot labels (if we
give classes=None, it will make a column for every unique label in the annotations).

load the Audio and Annotations

audio = Audio.from file(audio_file)

annotations = BoxedAnnotations.from raven_file (annotation_file, annotation_column=
—'Species')

split the audio into 5 second clips with no overlap (we use _ because we don't,,
—really need to save the audio clip objects for this demo)
_, clip_df = audio.split(clip_duration=5.0, clip_overlap=0.0)

labels_df = annotations.one_hot_labels_like(clip_df,min_label_ overlap=0.25,classes=]|
— "GWWA_song'])

#the returned dataframe of one-hot labels (0/1 for each class and each clip) has rows,
—corresponding to each audio clip
labels_df .head()

GWWA_song
start_time end_time
0.0 5.0 1.0
5.0 10.0 1.0
10.0 15.0 0.0
15.0 20.0 0.0
20.0 25.0 1.0

6.5 2. Split annotations into labels (without audio splitting)

The function in the previous example, one_hot_labels_like (), splits the labels according to start and end
times from a DataFrame. But how would we get that DataFrame if we aren’t actually splitting Audio files?

We can create the dataframe with a helper function that takes the same splitting parameters as Audio.split(). Notice
that we need to specify one additional parameter: the entire duration to be split (full_duration).

generate clip start/end time DataFrame
from opensoundscape.helpers import generate_clip_times_df
clip_df = generate_clip_times_df (full_duration=60,clip_duration=5.0, clip_overlap=0.0)

#we can use the clip_df to split the Annotations in the same way as before
labels_df = annotations.one_hot_labels_like(clip_df,min_label_overlap=0.25,classes=][
— "GWWA_song'])

#the returned dataframe of one-hot labels (0/1 for each class and each clip) has rows_
—corresponding to each audio clip
labels_df.head()

GWWA_song
start_time end_time

0.0 5.0 1.0
5.0 10.0 1.0
10.0 15.0 0.0
15.0 20.0 0.0
20.0 25.0 1.0

6.5. 2. Split annotations into labels (without audio splitting) 35

[17]:

[17]:

opensoundscape, Release 0.6.2

6.6 3. Split annotations directly using splitting parameters

Though we recommend using one of the above methods, you can also split annotations by directly calling
one_hot_clip_labels (). This method combines the two steps in the examples above (creating a clip df and
splitting the annotations), and requires that you specify the parameters for both of those steps.

Here’s an example that produces equivalent results to the previous examples:

labels_df = annotations.one_hot_clip_labels(
full_duration=60,
clip_duration=5,
clip_overlap=0,
classes=['"'GWWA_song'],
min_label_overlap=0.25,

)

labels_df.head()

GWWA_song
start_time end_time
0 5 1.0
5 10 1.0
10 15 0.0
15 20 0.0
20 25 1.0

6.6.1 Create audio clips and one-hot labels from many audio and annotation files
Let’s get to the useful part - you have tons of audio files (with corresponding Raven files) and you need to create
one-hot labels for 5 second clips on all of them. Can’t we just give you the code you need to get this done?!

Sure :)

but be warned, matching up the correct raven and audio files might require some finagling

6.7 find all the Raven and audio files, and see if they match up one-
to-one

caveat: you’ll need to be careful about matching up the correct Raven files and audio files. In this example, we’ll
assume our Raven files have exactly the same name (ignoring the extensions like “.Table.l.selections.txt”) as our
audio files, and that these file names are unique (!) - that is, no two audio files have the same name.

specify folder containing Raven annotations
raven_files_dir = "./gwwa_audio_and_raven_annotations/GWWA_XC_AnnoTables/"

find all .txt files (we'll naively assume all txt files are Raven files!)
raven_files = glob(f" {raven_files_dir}/+.txt")
print (f"found {len(raven_files) annotation files")

#specify folder containing audio files
audio_files_dir = "./gwwa_audio_and_raven_annotations/GWWA_XC/"

find all audio files (we'll assume they are .wav, .WAV, or .mp3)
audio_files = glob(f"{audio_files_dir//+.wav")+glob (f" {audio_files_dir}/+.WAV")+glob (£
—"{audio_files_dir}/+.mp3")

(continues on next page)

36 Chapter 6. Manipulating audio annotations

[25]:

[26]:

[27]:

[28]:

opensoundscape, Release 0.6.2

(continued from previous page)

print (f"found {len(audio_files) } audio files")

pair up the raven and audio files based on the audio file name
from pathlib import Path

audio_df = pd.DataFrame ({'audio_file':audio_files})
audio_df.index = [Path(f).stem for f in audio_files]

#check that there aren't duplicate audio file names
print ('\n audio files with duplicate names:')
audio_df[audio_df.index.duplicated (keep=False)]

found 3 annotation files
found 3 audio files

audio files with duplicate names:

Empty DataFrame
Columns: [audio_file]
Index: []

raven_df = pd.DataFrame ({'raven file':raven_files})
raven_df.index = [Path(f) .stem.split('.Table'") [0] for f in raven_files]

#check that there aren't duplicate audio file names
print ('\n raven files with duplicate names:')
raven_df [raven_df.index.duplicated (keep=False)]

raven files with duplicate names:

raven_file
13738 ./gwwa_audio_and_raven_annotations/GWWA_XC_Ann...
13738 ./gwwa_audio_and_raven_annotations/GWWA_XC_Ann...

Once we’ve resolved any issues with duplicate names, we can match up raven and audio files.

#remove the second selection table for file 13738.mp3
raven_df=raven_df [raven_df.raven_file.apply (lambda x: "selections2" not in x)]

paired_df = audio_df.join(raven_df, how="'outer"')

check if any audio files don’t have annotation files

print (f"audio files without raven file: {len(paired_df[paired_df.raven_file.
—apply(lambda x:x!=x)1) /")
paired_df [paired_df.raven_file.apply (lambda x:x!=x)]

audio files without raven file: 2

audio_file raven_file
135601 ./gwwa_audio_and_raven_annotations/GWWA_XC/135... NaN
13742 ./gwwa_audio_and_raven_annotations/GWWA_XC/137... NaN

check if any raven files don’t have audio files

#look at unmatched raven files
print (f"raven files without audio file: {len(paired_df[paired_df.audio_file.
—apply (lambda x:x!=x)1) /")

(continues on next page)

6.7. find all the Raven and audio files, and see if they match up one-to-one 37

[29]:

[33]:

opensoundscape, Release 0.6.2

(continued from previous page)

paired_df [paired_df.audio_file.apply (lambda x:x!=x)]
raven files without audio file: 1
audio_file raven_file

16989 NaN ./gwwa_audio_and_raven_annotations/GWWA_XC_Ann. ..

In this example, let’s discard any unpaired raven or audio files

paired_df = paired_df.dropna ()

paired_df

audio_file \
13738 ./gwwa_audio_and_raven_annotations/GWWA_XC/137...

raven_file
13738 ./gwwa_audio_and_raven_annotations/GWWA_XC_Ann...

6.8 split and save the audio and annotations

Now we have a set of paired up raven and audio files.
Let’s split each of the audio files and create the corresponding labels.

We’ll want to keep the names of the audio clips that we create using Audio.split_and_save() so that we can correspond
them with one-hot clip labels.

Note: it will be confusing and annoying if your Raven files use different names for the annotation column. Ideally, all
of your raven files should have the same column name for the annotations.

%$%bash
mkdir -p ./temp_clips

#choose settings for audio splitting
clip_duration = 3

clip_overlap = 0

final _clip = None

clip_dir = './temp_clips'

#choose settings for annotation splitting
classes = None#/['GWWA_song', 'GWWA_dzit'] #list of all classes, or None
min_label_overlap = 0.1

#store the label dataframes from each audio file so that we can aggregate them later
#Note: 1f you have a huge number (millions) of annotations, this might get very large.
#an alternative would be to save the individual dataframes to files, then concatenate,
—~them later.

all_labels = []

cnt = 0

for i, row in paired_df.iterrows():

(continues on next page)

38 Chapter 6. Manipulating audio annotations

opensoundscape, Release 0.6.2

(continued from previous page)

#load the audio into an Audio object
audio = Audio.from_file(row['audio_ file'])

#in this example, only the first 60 seconds of audio is annotated
#so trim the audio to 60 seconds max
audio = audio.trim (0, 60)

#split the audio and save the clips

clip_df = audio.split_and_save (
clip_dir,
prefix=row.name,
clip_duration=clip_duration,
clip_overlap=clip_overlap,
final clip=final_clip,
dry_run=False

#load the annotation file into a BoxedAnnotation object
annotations = BoxedAnnotations.from_raven_file(row['raven_file'],annotation_
—column="'Species')

#since we trimmed the audio, we'll also trim the annotations for consistency
annotations = annotations.trim(0, 60)

#split the annotations to match the audio

#we choose to keep_index=True so that we retain the audio clip's path in the,
—~final label dataframe

labels = annotations.one_hot_labels_like(clip_df,classes=classes,min_label_
—overlap=min_label_overlap, keep_index=True)

#since we have saved short audio clips, we can discard the start_time and end_
—~time indices

labels = labels.reset_index(level=[1,2],drop=True)

all labels.append(labels)

cnt+=1
if cnt>2:
break

#make one big dataframe with all of the labels. We could use this for training, for,
—instance.
all_labels = pd.concat (all_labels)

all _labels

? GWWA_song
file
./temp_clips/13738_0.0s_3.0s.wav 0.0 1.0
./temp_clips/13738_3.0s_6.0s.wav 0.0 0.0
./temp_clips/13738_6.0s_9.0s.wav 0.0 1.0
./temp_clips/13738_9.0s_12.0s.wav 0.0 0.0
./temp_clips/13738_12.0s_15.0s.wav 1.0 0.0
./temp_clips/13738_15.0s_18.0s.wav 0.0 0.0
./temp_clips/13738_18.0s_21.0s.wav 0.0 1.0
./temp_clips/13738_21.0s_24.0s.wav 0.0 1.0
./temp_clips/13738_24.0s_27.0s.wav 0.0 1.0
./temp_clips/13738_27.0s_30.0s.wav 0.0 1.0

(continues on next page)

6.8. split and save the audio and annotations 39

[35]:

opensoundscape, Release 0.6.2

./temp_clips/13738_30.
./temp_clips/13738_33.
./temp_clips/13738_36.
./temp_clips/13738_39.
./temp_clips/13738_42.
./temp_clips/13738_45.
./temp_clips/13738_48.
./temp_clips/13738_51.

0s_33.
0s_36.
0s_39.
Os_42.
0s_45.
0s_48.
Os_b51.
0s_54.

Os
Os
Os
0s
Os
Os
0s
Os

.wav
.wav
.wav
.wav
.wav
.wav
.wav
.wav

O O O O O O O o

O O O O O O o o

= O O kFr OO O

(continued from previous page)

O OO O O o oo

6.9 sanity check: look at spectrograms of clips labeled 0 and 1

ignore the "?" annotations for this visualization
all_labels = all_labels[all_labels["?"]==0]

plot spectrograms for 3 random positive clips
positives = all_labels[all_labels['GWWA_song']==1].sample (3, random_state=0)

print ("spectrograms of 3 random positive clips

for positive_clip in positives.index.values:
Spectrogram. from_audio (Audio.from_file (positive_clip)) .plot ()

plot spectrograms for 5 random negative clips
negatives = all_labels[all_labels['GWWA_song']==0].sample (3, random_state=0)

print ("spectrogram of 3 random negative clips

for negative_clip in negatives.index.values:
Spectrogram. from_audio (Audio.from_file (negative_clip)) .plot ()

spectrograms of 3 random positive clips

(label=1)

(label=1)")

(label=0)")

20000 A

17500 1

15000 1

g 12500 A
. 7500 1
5000 7
2500 i
0 T T T T T
0.5 1.0 tim;l.(ssec) 2.0 2.5
40 Chapter 6. Manipulating audio annotations

opensoundscape, Release 0.6.2

frequency (Hz)

frequency (Hz)

20000 A
17500 A E
15000 1

|
12500 A

10000
7500
5000

2500

0.5 1.0 1.5 20
time (sec)

20000 A
17500 A
15000

>
i\}{ -
By

12500 4 T

10000

7500

5000

2500

0.5 1.0 1.5 2.0
time (sec)

spectrogram of 3 random negative clips (label=0)

frequency (Hz)

25

20000

17500

RIS

15000 '#—'?I’
12500
10000

7500

5000

2500

T
0.5 1.0 1.5 2.0
time (sec)

25

6.9. sanity check: look at spectrograms of clips labeled 0 and 1

41

[37]:

opensoundscape, Release 0.6.2

20000
17500
|
15000
12500 4

10000

frequency (Hz)

7500

5000

2500

0.5 1.0 1.5 20 25
time (sec)

20000

17500

15000

12500

10000

frequency (Hz)

7500

5000

2500

0.5 1.0 1.5 2.0 25
time (sec)

clean up: remove temp_clips directory

import shutil
shutil.rmtree ('./gwwa_audio_and_raven_annotations')
shutil.rmtree('./temp_clips"')

42 Chapter 6. Manipulating audio annotations

CHAPTER /

Prediction with pre-trained CNNs

This notebook contains all the code you need to use a pre-trained OpenSoundscape convolutional neural network
model (CNN) to make predictions on your own data. Before attempting this tutorial, install OpenSoundscape by
following the instructions on the OpenSoundscape website, opensoundscape.org. More detailed tutorials about data
preprocessing, training CNNs, and customizing prediction methods can also be found on this site.

Note that prediction no longer requires you to split your files into clips ahead of time - you can simply create a list of
audio files of arbitrary length. Prediction scores will be generated on windows of a fixed length, eg 5 seconds, for the
duration of each audio file.

7.1 Load required packages

The cnn module provides a function 1oad_model to load saved opensoundscape models

from opensoundscape.torch.models.cnn import load_model, load_outdated_model
import opensoundscape

load some additional packages and perform some setup for the Jupyter notebook.

Other utilities and packages
import torch

from pathlib import Path
import numpy as np

import pandas as pd

from glob import glob

import subprocess

#set up plotting

from matplotlib import pyplot as plt
plt.rcParams|['figure.figsize']=[15,5] #for large visuals
%config InlineBackend.figure_format = 'retina'

create and save a model object to use for demonstration in this notebook:

43

http://opensoundscape.org/

opensoundscape, Release 0.6.2

from opensoundscape.torch.models.cnn import PytorchModel
PytorchModel ('resnet18',[0,1,2]) .save('./temp.model")

created PytorchModel model object with 3 classes

7.2 Load a saved model

For this example, let’s download a pre-trained model from the Kitzes Lab box to use as an example. This 2-class
model is not actually good at recognizing any particular species, but it’s useful for illustrating how prediction works.

subprocess.run(['curl',
'https://pitt.box.com/shared/static/s91lydizgspwsimo4p515j4nfiyeg319k.
—model"',

'-L', '-0o', 'example.model'])
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0) ==8==g== —==8=o—8=c =—g==g== 0
0 0 0 0 0 0 0 @ ==g==g== ==g=—=8== ==g==g== 0
100 8 0 8 0 0 6 @ ==g==g== 030080l ==g==g== 0
100 85.4M 100 85.4M 0 0 4049k 0 0:00:21 0:00:21 —--:——:-— 5221k

CompletedProcess (args=['curl', 'https://pitt.box.com/shared/static/
—s91lydizgspwsimo4p515374nf99yeg319k.model', '-L', '-o', 'example.model'], returncode=0)

load the model object using the 1oad_model function

: model = load_model ('./example.model")

7.2.1 Choose audio files for prediction
Create a list of audio files to predict on. They can be of any length. Consider using g1 ob to find many files at once.
For this example, let’s download a 1-minute audio clip from the Kitzes Lab box to use as an example.

subprocess.run(['curl',
'https://pitt.box.com/shared/static/z73eked7quhlt2pp93axzrrpgbwwydx0 .

—wav',
'-L', '-0o', 'Ilmin_audio.wav'])
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

0 0 0 0 0 0 0) ==8==g== —==8=o—8=c =—g==g== 0

0 0 0 0 0 0 0 @ ==g==g== ==g=—=g== ==g==g== 0
100 7 0 7 0 0 5 0 ==g==g== 030080l ==g==g== 5
100 3750k 100 3750k 0 0 1220k © 000503 02300803 ==g==3== 337K

CompletedProcess (args=['curl', 'https://pitt.box.com/shared/static/
—z73eked7quhlt2pp93axzrrpgbwwydx0.wav', '-L', '-o', 'lmin_audio.wav'], returncode=0)

from glob import glob
audio_files = glob('./*.wav') #match all .wav files in the current directory
audio_files

['./1lmin_audio.wav']

44 Chapter 7. Prediction with pre-trained CNNs

[11]:

[117]:

opensoundscape, Release 0.6.2

7.2.2 Prepare a dataframe and dataset for prediction

The prediction dataframe will have the names of each file and the start and end time of each window that we want to
generate predictions for. OpenSoundscape provides a helper function to create this dataframe in the case where we
want to predict on fixed-length windows with a fixed overlap between consecutive windows. Note that we need to
know the duration of clips that the model expects, eg 5 second clips for the model we downloaded above.

from opensoundscape.helpers import make_clip_df
clip_df = make_clip_df (files=audio_files,clip_duration=5.0)
clip_df.head()

start_time end_time

file

./1lmin_audio.wav 0.0 5.0
./1lmin_audio.wav 5.0 10.0
./1lmin_audio.wav 10.0 15.0
./1lmin_audio.wav 15.0 20.0
./1lmin_audio.wav 20.0 25.0

note that we might need to change the preprocessing parameters of our Preprocessor object to match the model’s
preprocessing used during training (e.g. spectrogram parameters or bandpassing)

from opensoundscape.preprocess.preprocessors import ClipLoadingSpectrogramPreprocessor
prediction_dataset = ClipLoadingSpectrogramPreprocessor (clip_df)

we can check on the parameters used during trainig by accessing model.train_dataset. For instance, check the band-
passing behavior of the training dataset:

(Note that an empty params dictionary indicates that default values were used)

model.train_dataset.actions.bandpass.params

{'"min_f': 0, 'max_f': 11025, 'out_of_ bounds_ok': False}

7.3 generate predictions with the model

The model returns a dataframe with a Multilndex of file, start_time, and end_time. There is one column for each class.

scores, _, = model.predict (prediction_dataset)

scores.head ()

(12, 2)
absent present
file start_time end_time
./1min_audio.wav 0.0 5.0 0.277278 -0.293570
5.0 10.0 0.359079 -0.363364
10.0 15.0 -1.124166 1.038807
15.0 20.0 0.350859 -0.332194
20.0 25.0 -3.864331 3.613130

7.4 Using models from older OpenSoundscape versions

Models trained and saved with OpenSoundscape versions prior to 0.6.1 need to be loaded in a different way, and
require that you know the architecture of the saved model.

7.3. generate predictions with the model 45

[14]:

[16]:

: model = load_outdated_model ('./opso_04_model_acanthis-flammea.tar',model_class =

opensoundscape, Release 0.6.2

For example, one set of our publicly availably binary models for 500 species was created with an older version of
OpenSoundscape. These models require a little bit of manipulation to load into OpenSoundscape 0.5.x and onward.
From the model notes page, we know that these models were trained with a resnetl8 architecture. We can load them
into a PytorchModel class.

First, let’s download one of these models (it’s stored in a .tar format) and save it to the same directory as this notebook
in a file called opso_04_model_acanthis-flammea.tar

subprocess.run(['curl',
'https://pitt.box.com/shared/static/lglpty35omjhmg6cdz8cfudm43nn2t9f.
—tar',
'-L', '-o', 'opso_04_model_acanthis-flammea.tar'])
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

0 0 0 0 0 0 0 @ ==g==g== ==g==g== ==g==3g== 0

0 0 0 0 0 0 0 0 ==8==8=— ==g==g== ==g==g== 0
100 8 0 8 0 0 6 @ ==g==g== 030080l ==g==g== 6
100 42.9M 100 42.9M 0 0 2720k 0 0:00:16 0:00:16 -—:——:—— 5099k

CompletedProcess (args=['curl', 'https://pitt.box.com/shared/static/
—1lglpty35omjhmg6cdz8cfudm43nn2t9f.tar', '-L', '-o', 'opso_04_model_acanthis-flammea.
—tar'], returncode=0)

from opensoundscape.torch.models.cnn import load_outdated_model
from opensoundscape.torch.architectures import cnn_architectures

the load_outdated_model function will expect us to specify the model class (we’ll use PytorchModel) and architecture
constructor (we’ll use cnn_architectures.resnetl18). In this case, we also want to specify that the model should be
single-tartet (models are multi-target by default)

o

—PytorchModel, architecture_constructor=cnn_architectures.resnetl8)
model.single_target = True

created PytorchModel model object with 2 classes
<All keys matched successfully>

The model is now fully compatible with OpenSoundscape, and can be used as above. For example:

scores, _, _ = model.predict (prediction_dataset)
scores.head ()

(12, 2)
acanthis—-flammea—-absent \
file start_time end_time
./1min_audio.wav 0.0 5.0 5.777371
5.0 10.0 4.891728
10.0 15.0 5.632080
15.0 20.0 4.748437
20.0 25.0 4.424040
acanthis—-flammea-present
file start_time end_time
./1lmin_audio.wav 0.0 5.0 -5.517636
5.0 10.0 -4.772002
10.0 15.0 -5.395757
15.0 20.0 -5.166635
20.0 25.0 -5.115609

46 Chapter 7. Prediction with pre-trained CNNs

https://pitt.app.box.com/s/3048856qbm9x55yi3zfksa3fide5uuf4

opensoundscape, Release 0.6.2

7.5 Options for prediction

The code above returns the raw predictions of the model without any post-processing (such as a softmax layer or a
sigmoid layer).

For details on how to use the predict () function for post-processing of predictions and to generate binary 0/1
predictions of class presence, see the “Basic training and prediction with CNNs” tutorial notebook. But, as a
quick example, let’s add a softmax layer to make the prediction scores for both classes sum to 1. We can also
use the binary preds argument to generate 0/1 predictions for each sample and class. For presence/absence
models, use the option binary_preds='single_target'. For multi-class models, think about whether
each clip should be labeled with only one class (single target) or whether each clip could contain multiple classes
(binary_preds='multi_target')

scores, binary_predictions, _ = model.predict (
prediction_dataset,
activation_layer='softmax',
binary_preds='single_target'

(12, 2)

As before, the scores are continuous variables, but now have been softmaxed:

scores.head ()

acanthis—-flammea—-absent \

file start_time end_time
./1lmin_audio.wav 0.0 5.0 0.999988
5.0 10.0 0.999936
10.0 15.0 0.999984
15.0 20.0 0.999951
20.0 25.0 0.999928
acanthis-flammea-present

file start_time end_time
./1lmin_audio.wav 0.0 5.0 0.000012
5.0 10.0 0.000064
10.0 15.0 0.000016
15.0 20.0 0.000049
20.0 25.0 0.000072

We also have an additional output, the binary 0/1 (“absent” vs “present”) predictions generated by the model:

: binary_predictions.head()

acanthis-flammea—-absent \

file start_time end_time
./1lmin_audio.wav 0.0 5.0 1.0
5.0 10.0 1.0
10.0 15.0 1.0
15.0 20.0 1.0
20.0 25.0 1.0
acanthis-flammea-present

file start_time end_time
./1lmin_audio.wav 0.0 5.0 0.0
5.0 10.0 0.0
10.0 15.0 0.0

(continues on next page)

7.5. Options for prediction 47

[207] :

[21]:

opensoundscape, Release 0.6.2

(continued from previous page)

o O
o o

It is sometimes helpful to look at a histogram of the scores:

_ = plt.hist (scores['acanthis-flammea-present'],bins=20)
plt.xlabel ('softmax score for positive class')

3.01

2.51

2.01

154

1.04

0.51

0.0-

4 5 6 7

softmax score for positive class le—5

7.6 Deprecated: Using LongAudioPreprocessor to predict on (un-
split) audio files

It’s also possible to run predictions on long audio files by loading entire files and letting OpenSoundscape split them
while predicting. This is deprecated in favor of the approach shown above and has high memory (RAM) requirements.
In this case, OpenSoundscape will internally split the audio into short segments during prediction. The input dataframe
in this case is simply a dataframe with file paths. The model.split_and_predict() method expects the user to provide
the audio clip length.

Let’s look at an example. We’ll use the 1 minute audio file contained within OpenSoundscape’s test folder as a “long”
audio file. In practice, you can split files that are multiple hours long - the limiting factor is your computer’s memory
(“RAM?”), which must be able to hold the entire audio file.

import opensoundscape
from opensoundscape.preprocess.preprocessors import LongAudioPreprocessor

#get audio path from opensoundscape's tests folder
long_audio_prediction_df = pd.DataFrame (index=audio_files)
img_shape = [224,224]

#the audio will be split during prediction. choose the clip length and overlap of_
—sequential clips (0 for no overlap)
clip_length = 5.0
clip_overlap = 0.0
long_audio_prediction_ds = LongAudioPreprocessor (
long_audio_prediction_df,
audio_length=clip_length,
clip_overlap=clip_overlap,
out_shape=img_shape,

(continues on next page)

48 Chapter 7. Prediction with pre-trained CNNs

opensoundscape, Release 0.6.2

(continued from previous page)

/Users/SML161/opt/miniconda3/envs/opso/lib/python3.7/site-packages/ipykernel launcher.

—py:15: DeprecationWarning: Call to deprecated class LongAudioPreprocessor.
—ClipLoadingSpectrogramPreprocessorfor similar functionality with lower memory,,

—requirements.) —-- Deprecated since version 0.6.1.
from ipykernel import kernelapp as app

in addition to the scores (and potentially, predictions) the function returns a list of “unsafe” samples that caused errors

during preprocessing.

score_df, pred_df, unsafe_samples = model.split_and_pre
long_audio_prediction_ds,
file_batch_size=1,
num_workers=0,
activation_layer=None,
binary_preds='single_target',
threshold=0.5,
clip_batch_size=4,
error_log=None,
)

score_df .head ()

dict (

/Users/SML161/opt/miniconda3/envs/opso/lib/python3.7/site-packages/ipykernel_launcher.

—py:9: DeprecationWarning: Call to deprecated method split_and_predict.
) for similar functionality,

—ClipLoadingSpectrogramPreprocessorwith model.predict (

—but lower memory requirements.) —-- Deprecated since version 0.6.1.
if __ name_ == '_ _main_ ':
acanthis-flammea-absent \
file start_time end_time
./1lmin_audio.wav 0.0 5.0 5.777371
5.0 10.0 4.891728
10.0 15.0 5.632079
15.0 20.0 4.748437
20.0 25.0 4.424040
acanthis—-flammea-present
file start_time end_time
./1lmin_audio.wav 0.0 5.0 -5.517637
5.0 10.0 -4.772002
10.0 15.0 -5.395757
15.0 20.0 -5.166635
20.0 25.0 -5.115609

7.6.1 Clean up: delete model objects

from glob import glob
from pathlib import Path

for p in Path('.').glob('x.model') :
p-unlink ()

for p in Path('.').glob('x.tar'"):
p.unlink ()

Path('lmin_audio.wav') .unlink ()

7.6. Deprecated: Using LongAudioPreprocessor to predict on (un-split) audio files

49

opensoundscape, Release 0.6.2

50 Chapter 7. Prediction with pre-trained CNNs

CHAPTER 8

Beginner friendly training and prediction with CNNs

Convolutional Neural Networks (CNNs) are a popular tool for developing automated machine learning classifiers on
images or image-like samples. By converting audio into a two-dimensional frequency vs. time representation such
as a spectrogram, we can generate image-like samples that can be used to train CNNs. This tutorial demonstrates
the basic use of OpenSoundscape’s preprocessors and cnn modules for training CNNs and making predictions
using CNNs.

Under the hood, OpenSoundscape uses Pytorch for machine learning tasks. By using OpenSoundscape’s CNN classes
such as PytorchModel in combination with preprocessor classes such as CnnPreprocessor, you can train and
predict with PyTorch’s powerful CNN architectures in just a few lines of code.

First, let’s import some utilities.

Preprocessor classes are used to load, transform, and augment audio samples for use,
—1in a machine learing model
from opensoundscape.preprocess.preprocessors import CnnPreprocessor

the cnn module provides classes for training/predicting with various types of CNNs
from opensoundscape.torch.models.cnn import PytorchModel

#other utilities and packages
import torch

import pandas as pd

from pathlib import Path
import numpy as np

import pandas as pd

import random

import subprocess

#set up plotting

from matplotlib import pyplot as plt
plt.rcParams|['figure.figsize']=[15,5] #for large visuals
%config InlineBackend.figure_format = 'retina'

Set manual seeds for pytorch and python. These ensure the training results are reproducible. You probably don’t want
to do this when you actually train your model, but it’s useful for debugging.

51

opensoundscape, Release 0.6.2

torch.manual_seed (0)
random. seed (0)

8.1 Prepare audio data

8.1.1 Download labeled audio files

Training a machine learning model requires some pre-labeled data. These data, in the form of audio recordings or
spectrograms, are labeled with whether or not they contain the sound of the species of interest. These data can be
obtained from online databases such as Xeno-Canto.org, or by labeling one’s own ARU data using a program like
Cornell’s Raven sound analysis software.

The Kitzes Lab has created a small labeled dataset of short clips of American Woodcock vocalizations. You have two
options for obtaining the folder of data, called woodcock_labeled_data:

1. Run the following cell to download this small dataset. These commands require you to have tar installed on
your computer, as they will download and unzip a compressed file in . tar. gz format.

2. Download a . z1ip version of the files by clicking here. You will have to unzip this folder and place the unzipped
folder in the same folder that this notebook is in.

Note: Once you have the data, you do not need to run this cell again.

subprocess.run(['curl', 'https://pitt.box.com/shared/static/
—79f17d715dulcldsy6buogz02rsn5uesd.gz', '-L"', '-o', 'woodcock_labeled data.tar.gz']l) #
—Download the data

subprocess.run(["tar","-xzf", "woodcock_labeled_data.tar.gz"]) # Unzip the downloaded
—~tar.gz file

subprocess.run(["rm", "woodcock_ labeled_data.tar.gz"]) # Remove the file after its_

[

—contents are unzipped

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 ==g==g== ==g==g== ==g==g== 0
0 0 0 0 0 0 0 0 ==g==g== ==g==g== ==g==g== 0
100 7 0 7 0 0 5 0 ==g==g== 030080l ==g==g== 0
100 4031k 100 4031k 0 0 1110k 0 0:00:03 0:00:03 ——:——:—— 2797k
CompletedProcess (args=['rm', 'woodcock_labeled_data.tar.gz'], returncode=0)

8.1.2 Generate one-hot encoded labels

The folder contains 2s long audio clips taken from an autonomous recording unit. It also contains a file
woodcock_labels.csv which contains the names of each file and its corresponding label information, created
using a program called Specky.

#load Specky output: a table of labeled audio files
specky_table = pd.read_csv (Path ("woodcock_labeled_data/woodcock_labels.csv"))
specky_table.head()

filename woodcock sound_type

0 d4c40b6066b489518f8da83afleecd4984.wav present song
1 e84a4b60ad4f2d049d73162ee99%a7ead8.wav absent na
2 79678c979%9ebb880d5bed6d56f26ba69ff.wav present song

(continues on next page)

52 Chapter 8. Beginner friendly training and prediction with CNNs

https://pitt.box.com/shared/static/m0cmzebkr5qc49q9egxnrwwp50wi8zu5.zip
https://github.com/rhine3/specky

opensoundscape, Release 0.6.2

(continued from previous page)

3 498900772670b569e142440£fa39p3041c.wav present song
4 0c453a87185d8c7ce05c5cbac5d525de.wav present song

This table must provide an accurate path to the files of interest. For this self-contained tutorial, we can use relative
paths (starting with a dot and referring to files in the same folder), but you may want to use absolute paths for your
training.

#update the paths to the audio files
specky_table.filename = ['./woodcock_labeled data/'+f for f in specky_table.filename]
specky_table.head()

filename woodcock sound_type

0 ./woodcock_labeled_data/d4c40b6066b489518£f8da8... present song
1 ./woodcock_labeled_data/e84a4b60adf2d049d73162... absent na
2 ./woodcock_labeled_data/79678c979ebb880d5ed6d5... present song
3 ./woodcock_labeled_data/49890077267b569e142440... present song
4 ./woodcock_labeled_data/0c453a87185d8c7ce05c5¢c... present song

We then use the categorical_to_one_hot function from opensoundscape.annotations to crate “one
hot” labels - that is, a column for every class, with 1 for present or O for absent in each sample’s row. In this case, our
classes are simply 'negative' for files without a woodcock and 'positive' for files with a woodcock.

We’ll need to put the paths to audio files as the index of the DataFrame.

Note that these classes are mutually exclusive, so we have a “single-target” problem, as opposed to a “multi-target”
problem where multiple classes can simultaneously be present.

from opensoundscape.annotations import categorical_to_one_hot

one_hot_labels, classes = categorical_to_one_hot (specky_table[['woodcock']].values)
labels = pd.DataFrame (index=specky_table['filename'],data=one_hot_labels,
—columns=classes)

labels.head()

absent present
filename
./woodcock_labeled_data/d4c40b6066b489518f8das83. ..
./woodcock_labeled_data/e84a4b60adf2d049d73162e. ..
./woodcock_labeled_data/79678c979%9ebb880d5ed6d56. . .
./woodcock_labeled _data/49890077267b569%9e142440f. ..
./woodcock_labeled_data/0c453a87185d8c7ce05c5c¢5. ..

oo or o
— PP o

If we want to, we can always convert one_hot labels back to categorical labels:

from opensoundscape.annotations import one_hot_to_categorical
categorical_labels = one_hot_to_categorical (one_hot_labels,classes)
categorical_labels[:3]

[['present'], ['absent'], ['present']]

8.1.3 Split into training and validation sets

We use a utility from sklearn to randomly divide the labeled samples into two sets. The first set, train_df, will
be used to train the CNN, while the second set, valid_df, will be used to test how well the model can predict the
classes of samples that it was not trained with.

During the training process, the CNN will go through all of the samples once every “epoch” for several (sometimes
hundreds of) epochs. Each epoch usually consists of a “learning” step and a “validation” step. In the learning step,

8.1. Prepare audio data 53

[11]:

opensoundscape, Release 0.6.2

the CNN iterates through all of the training samples while the computer program is modifying the weights of the
convolutional neural network. In the validation step, the program performs prediction on all of the validation samples
and prints out metrics to assess how well the classifier generalizes to unseen data.

from sklearn.model_selection import train_test_split
train_df,valid_df = train_test_split (labels,test_size=0.2, random_state=1)

8.1.4 Create preprocessors for training and validation

Preprocessors in OpenSoundscape can be used to process audio data, especially for training and prediction with con-
volutional neural networks.

To train a CNN, we use CnnPreprocessor, which loads audio files, creates spectrograms, performs various aug-
mentations to the spectrograms, and returns a pytorch Tensor to be used in training or prediction. All of the steps in
the preprocessing pipeline can be modified or skipped by modifying the preprocessor’s .actions. For details on
how to modify and customize a preprocessor, see the preprocessing notebook/tutorial.

Each Preprocessor must be initialized with a very specific dataframe with the following attributes:
* the index of the dataframe provides paths to audio samples
¢ the columns are the class names
* the values are O (absent/False) or 1 (present/True) for each sample and each class.

The train_df and valid_df we created above meet these needs:

train_df.head ()

absent present
filename
./woodcock_labeled_data/49890077267b569e142440f. ..
./woodcock_labeled_data/ad90eefb6196ca83f9cf43b...
./woodcock_labeled_data/e9%9e7153dl1lde3ac8fc3f716...
./woodcock_labeled_data/c057a4486b25cd638850£c0. ..
./woodcock_labeled_data/0c453a87185d8c7cel05c5c¢5. ..

o oo oo
e e

We next create separate preprocessors for training and for validation. These data will be assessed separately each
epoch, as described above.

from opensoundscape.preprocess.preprocessors import CnnPreprocessor
train_dataset = CnnPreprocessor (train_df)

valid_dataset = CnnPreprocessor (valid_df)

8.1.5 Inspect training images

Before creating a machine learning algorithm, we strongly recommend making sure the images coming out of the
preprocessor look like you expect them to. Here we generate images for a few samples.

First, in order to view the images, we need a helper function that correctly displays the Tensor that comes out of the
Preprocessor.

helper function for displaying a sample as an image
def show_tensor (sample) :

(continues on next page)

54 Chapter 8. Beginner friendly training and prediction with CNNs

opensoundscape, Release 0.6.2

(continued from previous page)

plt.imshow ((sample['X"'][0,:,:]1/2+0.5) -1, cmap="'Greys',vmin=-1, vmax=0)
plt.show ()

Now, load a handful of random samples, printing the labels and image for each:

[12]: for i, d in enumerate(train_dataset.sample (n=4)):
print (f"labels: {d['y']l}")
show_tensor (d)

labels: tensor ([0, 11)

0
25
50
75

100
125
150
175

200

o] 25 50 75 100 125 150 175 200

labels: tensor([1, 0])

0 = = ¥ ELNE = AT R
| AR
"H B HARLES B SR v f

25
o {RINI ﬁ ” J;}'i»gﬁtﬁm

. LN ‘“‘. \ l' ‘d’.-uﬂl-t. Jb-d‘
75
100 1
1254
150
175

200

o] 25 50 75 100 125 150 175 200

labels: tensor ([0, 11)

8.1. Prepare audio data 55

[13]:

opensoundscape, Release 0.6.2

25

50

75

100

125

150

175

200

0

labels:

0

25

50

75

100

125

150

175

200

iy L
|'.'l“l 711‘ ll.ll "l ".Ip %5

25 50 75

tensor ([0,

25 50 75

L]

100 125 150 175 200

1])

100 125 150 175 200

The CnnPreprocessor preprocessor allows you to turn all augmentation off or on as desired. Inspect the unaug-
mented images as well:

train_dataset.augmentation_off ()
d in enumerate (train_dataset.sample (n=4)):

for i,

print (f"labels:

show_tensor (d)
#turn augmentation back on when we're done

train_dataset.augmentation_on ()

labels:

tensor ([0,

{faf'y'11")

1])

56

Chapter 8. Beginner friendly training and prediction with CNNs

opensoundscape, Release 0.6.2

“'H‘
"kﬁﬂﬁiihl

AN A
o W 1Jiik
I;%l"'lr N

0 25 50 75 100 125 150 175 200

labels: tensor ([0, 11)

0

25

50

75

100

125

150

175

200

o] 25 50 75 100 125 150 175 200

labels: tensor([1l, 0])

8.1. Prepare audio data

57

opensoundscape, Release 0.6.2

100
125
150 .
175

200

0 25 50 75 100 125 150 175 200

labels: tensor ([0, 11)

25
50
75

100

125

1501

175

200

o] 25 50 75 100 125 150 175 200

8.2 Training

Now, we create a convolutional neural network model object, train it on the train_dataset with validation from
valid_dataset, and use it for prediction.

8.2.1 Set up a two-class, single-target model

This demonstrates using a two class, single-target model.

* The two classes in this case are “positive” and “negative.”

58 Chapter 8. Beginner friendly training and prediction with CNNs

opensoundscape, Release 0.6.2

* The model is “single target,” meaning that each sample belongs to exactly one class, “positive” or “negative”

We usually use two-class, single-target models to predict the presence or absence of a single species. We often refer
to this as a “binary” model, but be careful not to confuse this for thresholded “binary” output predictions (1 or 0).

The model object should be initialized with a list of class names that matches the class names in the training dataset.
Here we’ll use the resnetl8 architecture, a popular and powerful architecture that makes a good staring point. For
more details on other CNN architectures, see the “Advanced CNN Training” tutorial.

Create model object
classes = train_df.columns
model = PytorchModel ('resnetl8',classes,single_target=True)

created PytorchModel model object with 2 classes

8.2.2 Train the model

Depending on the speed of your computer, training the CNN may take a few minutes.

We’ll only train for 5 epochs on this small dataset as a demonstration, but you’ll probably need to train for hundreds
of epochs on hundreds of training files (at a minimum) to create a useful model.

In practice, using larger batch sizes (64+) improves stability and generalizability of training, particularly for architec-
tures (such as ResNet) that contain a ‘batch norm’ layer. Here we use a small batch size to keep the computational
reqirements for this tutorial low.

: model.train(

train_dataset=train_dataset,
valid_dataset=valid_dataset,
save_path="'./binary_train/"',
epochs=5,

batch_size=8,
save_interval=100,
num_workers=0,

)

Epoch: 0 [batch 0/3 (0.00%)]
Jacc: 0.062 Hamm: 0.875 DistLoss: 1.151

Validation.
(6, 2)
Precision: 0.4166666666666667
Recall: 0.5
Fl: 0.45454545454545453
Updating best model
Epoch: 1 [batch 0/3 (0.00%)]
Jacc: 0.250 Hamm: 0.500 DistLoss: 2.262

Validation.
(6, 2)
Precision: 0.4166666666666667
Recall: 0.5
Fl: 0.45454545454545453
Epoch: 2 [batch 0/3 (0.00%)]
Jacc: 0.583 Hamm: 0.250 DistLoss: 0.505

Validation.
(6, 2)

(continues on next page)

8.2. Training 59

opensoundscape, Release 0.6.2

(continued from previous page)

Precision: 0.4166666666666667
Recall: 0.5
Fl: 0.45454545454545453
Epoch: 3 [batch 0/3 (0.00%)]
Jacc: 0.375 Hamm: 0.250 DistLoss: 1.272

Validation.
(6, 2)
Precision: 0.4166666666666667
Recall: 0.5
Fl: 0.45454545454545453
Epoch: 4 [batch 0/3 (0.00%)]
Jacc: 0.679 Hamm: 0.125 DistLoss: 0.374

Validation.
(6, 2)
Precision: 0.4166666666666667
Recall: 0.5
Fl: 0.45454545454545453
Saving weights, metrics, and train/valid scores.

Best Model Appears at Epoch 0 with F1 0.455.

8.2.3 Plot the loss history

We can plot the loss from each epoch to check that our loss is declining

[16]: plt.scatter (model.loss_hist.keys (), model.loss_hist.values())
plt.xlabel ('epoch')
plt.ylabel ('loss'")

[16]: Text (0, 0.5, '"loss')

2.25 A

2.00 A

1751

1.50 1

loss

1.251

1.00 1

0.75 A

0.50 A

0.0 0.5 1.0 15 20 25 3.0 35 4.0
epoch

[17]: model.save ('~/Downloads/example.model")

60 Chapter 8. Beginner friendly training and prediction with CNNs

[19]:

[19]:

[20] :

opensoundscape, Release 0.6.2

8.3 Prediction

We haven’t actually trained a useful model in 5 epochs, but we can use the trained model to demonstrate how prediction
works and show several of the settings useful for prediction.

8.3.1 Create preprocessor for prediction

Similar to training, prediction requires the use of a Preprocessor. To ensure that the preprocessing matches that used
during model training, we’ll create our prediction Preprocessor using the training preprocessor as a starting point. (If
you load a trained model from a file, you can access model .train_dataset).

In this instance, we’ll reuse the validation dataset used above, but in a real application you would likely want to use
the model for prediction on a separate dataset, such as a new and unlabeled dataset that you want to classify.

#create a copy of the training dataset, sampling 0 of the training samples from it
prediction_dataset = model.train_dataset.sample (n=0)

#turn off augmentation on this dataset

prediction_dataset.augmentation_off ()

#use the validation samples as test samples for the sake of illustration
prediction_dataset.df = valid_df

8.3.2 Predict on the validation dataset

We simply call model’s .predict () method on a Preprocessor instance.
This will return three dataframes:

* scores : numeric predictions from the model for each sample and class (by default these are raw outputs from
the model)

e predictions: ~ 0/1 predictions from the model for each sample and class (only generated if
binary_predictions argument is supplied)

* labels: Original labels from the dataset, if available

valid_scores_df, valid_preds_df, valid_labels_df = model.predict (prediction_dataset)
valid_scores_df.head ()

(6, 2)

absent present
./woodcock_labeled_data/882de25226ed989b31274ee... —34.736469 34.712406
./woodcock_labeled_data/92647ab903049%9a9%9eed4125ab... -29.079432 28.833181
./woodcock_labeled_data/75b2f63e032dbd6d1979004... -26.357983 26.485283
./woodcock_labeled_data/01c5d0c90bd4652£308fd9%¢c... —-35.237747 35.949291
./woodcock_labeled_data/adld4ac7£ffa729060712b442... -6.998813 8.033541

None: not generated because the ‘binary predictions’ argument was not supplied
valid_preds_df

: valid_labels_df.head()

absent present

./woodcock_labeled_data/882de25226ed989%b31274ee. .. 0 1
./woodcock_labeled_data/92647ab903049%a9%ee4125ab... 0 1
./woodcock_labeled_data/75b2f63e032dbd6d1979004. .. 0 1

(continues on next page)

8.3. Prediction 61

[22] :

[23]:

opensoundscape, Release 0.6.2

(continued from previous page)

./woodcock_labeled_data/01c5d0c90bd4652£308fd9%¢c. .. 0 1
./woodcock_labeled_data/adl4ac7£f£fa729060712b442. .. 1 0

The valid_preds dataframe in the example above is None - this is because we haven’t specified an option for the
binary_preds argument of predict. We can choose between 'single_target' prediction (always predict the
highest scoring class and no others) or 'multi_target' (predict 1 for all classes exceeding a threshold).

8.3.3 Create presence/absence (0/1) predictions
Supplying the binary_preds argument returns a dataframe in which the scores are transformed from continuous
numbers to either O or 1.

Note: Binary predictions always have some error rates, sometimes large ones. It is not generally advisable to use
these binary predictions as scientific observations without a thorough understanding of the model’s false-positive and
false-negative rates.

If you wish to output binary predictions, three options are available:
* None: default. do not create or return binary predictions
* 'single_target': predict that the highest-scoring class = 1, all others =0
* 'multi_target': provide a threshold. Scores above threshold = 1, others =0

For instance, using the option ' single_target ' chooses whichever of 'negative' or 'positive' ishigher.

scores,preds, labels = model.predict (prediction_dataset,binary_preds='single_target')
preds.head()

(6, 2)

absent present
./woodcock_labeled_data/882de25226ed989b31274ee. .. 0.0 1.0
./woodcock_labeled_data/92647ab903049%a9%ee4125ab. .. 0.0 1.0
./woodcock_labeled_data/75b2f63e032dbd6d1979004. .. 0.0 1.0
./woodcock_labeled_data/01c5d0c90bd4652£308fd9c. .. 0.0 1.0
./woodcock_labeled_data/adld4ac7£ffa729060712b442. .. 0.0 1.0

The 'multi_target' option allows you to select a threshold. If a score meets that threshold, the binary prediction
is 1; otherwise, it is O.

Each score will have a function applied to it that takes the score from the real numbers, (-inf, inf), to the range [0, 1]
(specifically the logistic sigmoid, or expit function). Whether the score meets this threshold will be based off of the
sigmoid, not the raw score.

score_df, pred_df, label_df = model.predict (
prediction_dataset,
binary_preds='multi_target',
threshold=0.99,

)

pred_df.head()

(6, 2)

absent present
./woodcock_labeled_data/882de25226ed989b31274ee. .. 0.0 1.0
./woodcock_labeled_data/92647ab903049%a9%ece4125ab. .. 0.0 1.0
./woodcock_labeled_data/75b2f63e032dbd6d1979004. .. 0.0 1.0

(continues on next page)

62 Chapter 8. Beginner friendly training and prediction with CNNs

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expit.html

[24]:

opensoundscape, Release 0.6.2

./woodcock_labeled_data/01c5d0c90bd4652£308fd9%¢c. ..
./woodcock_labeled_data/adl4ac7£f£fa729060712b442. ..

o O
o O

=

o O

(continued from previous page)

Note that in some of the above predictions, both the negative and positive classes are predicted to be present. This is
because the 'multi_target' option assumes that the classes are not mutually exclusive. For a presence/absence
model like the one above, the ' single_target ' option is more appropriate.

8.3.4 Change the activation layer

We can modify the final activation layer to change the scores returned by the predict () function. Note that this
does not impact the results of the binary predictions (described above), which are always calcuated using a sigmoid
transformation (for multi-target models) or softmax function (for single-target models).

Options include:

* None: default. Just the raw outputs of the network, which are in (-inf, inf)

e 'softmax"': scores across all classes will sum to 1 for each sample

* 'softmax_and_logit': softmax the scores across all classes so they sum to 1, then apply the “logit”
transformation to these scores, taking them from [0,1] back to (-inf,inf)

* 'sigmoid"': transforms each score individually to [0, 1] without requiring they sum to 1

In this case, since we are choosing between two mutually exclusive classes, we want to use the ' softmax ' activation.

valid_scores, valid_preds, valid_labels = model.predict (prediction_dataset,

—activation_layer='softmax"')

(6, 2)

Compare the softmax scores to the true labels for this dataset, side-by-side:

valid_dataset.df.join(valid_scores) .sample (5)

filename

./woodcock_labeled_data/92647ab903049%9a9%ee4125ab...
./woodcock_labeled_data/adl4ac7£f£fa729060712b442. ..
./woodcock_labeled_data/4afa902e823095e03ba23eb. ..
./woodcock_labeled_data/75b2f63e032dbd6d1979004. ..
./woodcock_labeled_data/01c5d0¢c90bd4652£308fd9%¢c. ..

filename

./woodcock_labeled_data/92647ab903049%a9%ee4125ab. ..
./woodcock_labeled_data/adl4ac7£f£fa729060712b442. ..
./woodcock_labeled_data/4afa902e823095e03ba23eb. ..
./woodcock_labeled_data/75b2£f63e032dbd6d1979004. ..
./woodcock_labeled_data/01¢c5d0c90bd4652£308fd9%¢c. ..

filename

./woodcock_labeled_data/92647ab903049%9a9%ece4125ab...
./woodcock_labeled_data/adld4ac7ffa729060712b442. ..
./woodcock_labeled_data/4afa902e823095e03ba23eb...

: valid_scores.columns = ['pred_negative', 'pred_positive']

absent present

o O O O

pred_negative

.061090e-26
.961637e-07
.963297e-28
.123211e-23
.212999%e-31

HRP w3

pred_positive

[=
o o o

e R

(continues on next page)

8.3. Prediction

63

[27]:

opensoundscape, Release 0.6.2

(continued from previous page)

./woodcock_labeled_data/75b2£f63e032dbd6d1979004. ..
./woodcock_labeled_data/01c5d0c90bd4652£308fd9%¢c. ..

=
o o

8.3.5 Parallelizing prediction

Two parameters can be used to increase prediction efficiency, depending on the computational resources available:

e num_workers: Pytorch’s method of parallelizing across cores (CPUs) - choose 0 to predict on the root process,
or >1 if you want to use more than 1 CPU

* batch_size: number of samples to predict on simultaneously

score_df, pred_df, label_df = model.predict (
valid_dataset,
batch_size=8,
num_workers=0,
binary_preds='multi_target'

8.4 Multi-class models

A multi-class model can have any number of classes, and can be either
* multi-target: any number of classes can be positive for one sample
* single-target: exactly one class is positive for each sample

Models that are multi-target benefit from a modified loss function, and we have implemented a special class called
CnnResampleloss specifically designed for multi-target problems. We can use it similarly to the PytorchModel class:

from opensoundscape.torch.models.cnn import CnnResampleloss
model = CnnResampleloss('resnetl8',classes)
print ("model.single_target:", model.single_target)

created PytorchModel model object with 2 classes
model.single_target: False

If you want a single-target model, uncomment and run the following line.

#model.single target = True

8.4.1 Train

Training looks the same as in two-class models.

: model.train(

train_dataset=train_dataset,
valid_dataset=valid_dataset,
save_path="'./multilabel_train/"',
epochs=1,

batch_size=16,

(continues on next page)

64 Chapter 8. Beginner friendly training and prediction with CNNs

opensoundscape, Release 0.6.2

(continued from previous page)

save_interval=100,
num_workers=0

)

Epoch: 0 [batch 0/2 (0.00%)]
Jacc: 0.500 Hamm: 0.500 DistLoss: 22.018

Validation.
(6, 2)
Precision: 0.4166666666666667
Recall: 0.5
Fl: 0.45454545454545453
Saving weights, metrics, and train/valid scores.
Updating best model

Best Model Appears at Epoch 0 with F1 0.455.

8.4.2 Predict

Prediction looks the same as demonstrated above, but make sure to think carefully:
e What activation_layer doI want?

e If outputting binary predictions for each sample and class, is my model single-target
(binary_preds="'single_target ') or multi-target (binary_preds="'multi_target')?

For more detail on these choices, see the sections about activation layers and binary predictions above.

train_preds,_,_ = model.predict (train_dataset)
train_preds.columns = ['pred negative', 'pred positive']
train_dataset.df.join(train_preds) .head ()

(23, 2)

absent present \
filename
./woodcock_labeled_data/49890077267b569e142440f. ..
./woodcock_labeled_data/ad90eefb6196ca83f9cf43b. ..
./woodcock_labeled _data/e9%9e7153dl1lde3ac8fc3f716...
./woodcock_labeled_data/c057a4486b25cd638850fc0. ..
./woodcock_labeled_data/0c453a87185d8c7cel05¢c5c¢5. ..

o oo oo
e e

pred_negative \

filename
./woodcock_labeled_data/49890077267b569e142440f. .. -4.728383
./woodcock_labeled_data/ad90eefb6196ca83f9cf43b... -5.338425
./woodcock_labeled_data/e%9e7153d11de3ac8fc3f716... -6.712691
./woodcock_labeled_data/c057a4486b25cd638850£fcO0. .. -4.538961
./woodcock_labeled_data/0c453a87185d8c7cel05c5c5. .. -4.409285
pred_positive
filename
./woodcock_labeled_data/498900772670569e142440f. .. 3.845540
./woodcock_labeled_data/ad90eefb6196ca83f9cf43b... 4.401108
./woodcock_labeled_data/e9e7153d11de3ac8fc3f716... 5.315771
./woodcock_labeled_data/c057a4486b25cd638850fc0. .. 3.375217
./woodcock_labeled_data/0c453a87185d8c7ce05c5ch. .. 3.186363

8.4. Multi-class models 65

opensoundscape, Release 0.6.2

8.5 Save and load models

Models can be easily saved to a file and loaded at a later time. If the model was saved with OpenSoundscape ver-
sion >=0.6.1, the entire model object will be saved - including the class, cnn architecture, loss function, and train-
ing/validation datasets. Models saved with earlier versions of OpenSoundscape do not contain all of this information
and may require that you know their class and architecture (see below).

8.5.1 Save

OpenSoundscape saves models automatically during training:

e The model saves weights to self.save_path to epoch-X.model automatically during training every
save_interval epochs

* The model keeps the file be st . mode 1 updated with the weights that achieve the best F1 score on the validation
dataset

You can also save the model manually at any time with model . save (path).

: modell = PytorchModel ('resnetl8',classes,single_target=True)

Save every 2 epochs

modell.train(
train_dataset=train_dataset,
valid_dataset=valid_dataset,
epochs=3,
batch_size=8,
save_path="'./binary_train/',
save_interval=2,
num_workers=0

)

modell.save('./binary_train/my_favorite.model')

created PytorchModel model object with 2 classes
Epoch: 0 [batch 0/3 (0.00%)]
Jacc: 0.314 Hamm: 0.500 DistLoss: 0.727

Validation.
(6, 2)
Precision: 0.4166666666666667
Recall: 0.5
Fl: 0.45454545454545453
Updating best model
Epoch: 1 [batch 0/3 (0.00%)]
Jacc: 0.250 Hamm: 0.500 DistLoss: 1.237

Validation.
(6, 2)
Precision: 0.4166666666666667
Recall: 0.5
Fl: 0.45454545454545453
Saving weights, metrics, and train/valid scores.
Epoch: 2 [batch 0/3 (0.00%)]
Jacc: 0.375 Hamm: 0.250 DistLoss: 0.549

Validation.
(6, 2)
Precision: 0.4166666666666667

(continues on next page)

66 Chapter 8. Beginner friendly training and prediction with CNNs

[33]:

[34]:

opensoundscape, Release 0.6.2

(continued from previous page)

Recall: 0.5
Fl: 0.45454545454545453
Saving weights, metrics, and train/valid scores.

Best Model Appears at Epoch 0 with F1 0.455.

8.5.2 Load

Models created with OpenSoundscape 0.6.1 and above can be loaded in their entirety with the 1Load_mode1 function:

from opensoundscape.torch.models.cnn import load_model
model = load_model ('./binary_train/best.model')

The model can now be used for prediction (model.predict ()) or to continue training (model.train ()).

8.6 Predict using saved model

Using a saved or downloaded model to run predictions on audio files is as simple as
1. Loading a previously svaed model
2. Creating an instance of a preprocessor class for prediction

3. Running model .predict () on the preprocessor

load the saved model
model = load_model ('./binary_train/best.model')

create a Preprocessor instance with the audio samples

use the model.train dataset as a starting point to ensure that our preprocessing,
—matches what the model expects

prediction_dataset = model.train_dataset.sample (n=0)
prediction_dataset.augmentation_off ()

prediction_dataset.df = valid_df

#predict on a dataset
scores,_,_ = model.predict (prediction_dataset, activation_layer='softmax_and_logit')

(6, 2)

8.7 Continue training from saved model

Similar to predicting using a saved model, we can also continue to train a model after loading it from a saved file.

By default, . 1oad () loads the optimizer parameters and learning rate parameters from the saved model, in addition
to the network weights.

Create architecture
model = load_model ('./binary_train/best.model')

Continue training from the checkpoint where the model was saved
model.train(train_dataset,valid_dataset, save_path='.",epochs=0)

8.6. Predict using saved model 67

ul

opensoundscape, Release 0.6.2

Best Model Appears at Epoch 0 with F1 0.000.

8.8 Next steps

You now have seen the basic usage of training CNNs with OpenSoundscape and generating predictions.

Additional tutorials you might be interested in are: * Custom preprocessing: how to change spectrogram parameters,
modify augmentation routines, etc. * Custom training: how to modify and customize model training * Predict with pre-
trained CNNs: details on how to predict with pre-trained CNNs. Much of this information was covered in the tutorial
above, but this tutorial also includes information about using models made with previous versions of OpenSoundscape

Finally, clean up and remove files created during this tutorial:

: import shutil

dirs = ['./multilabel_train', './binary_train', './woodcock_labeled_data']
[shutil.rmtree(d) for d in dirs]

[None, None, None]

68 Chapter 8. Beginner friendly training and prediction with CNNs

CHAPTER 9

Custom preprocessing

Preprocessors in OpenSoundscape perform all of the preprocessing steps from loading a file from the disk up to
providing a sample to the machine learning algorithm for training or prediction. These classes are used when (a)
training a machine learning model in OpenSoundscape, or (b) making predictions with a machine learning model in
OpenSoundscape.

If you are already familiar with PyTorch, you might notice that Preprocessors take the place of, and are children of,
PyTorch’s Dataset classes to provide each sample to PyTorch as a Tensor.

Preprocessors are designed to be flexible and modular, so that each step of the preprocessing pipeline can be modified
or removed. This notebook demonstrates:

e preparation of audio data to be used by a preprocessor

* how “Actions” are strung together into “Pipelines” to preprocess data

* modifying the parameters of actions

* turning Actions on and off

» modifying the order and contents of pipelines

* use of the AudioToSpectrogramPreprocessor class, including examples of:
— modifying audio and spectrogram parameters
— changing the output image shape
— changing the output type

¢ use of the CnnPreprocessor class, including examples of:
— choosing between default “augmentation on” and “augmentation off” pipelines
— modifying augmentation parameters
— using the “overlay” augmentation

* writing custom preprocessors and actions

First, import the needed packages.

69

opensoundscape, Release 0.6.2

Preprocessor classes are used to load, transform, and augment audio samples for use,
—1in a machine learing model

from opensoundscape.preprocess.preprocessors import BasePreprocessor,
—AudioToSpectrogramPreprocessor, CnnPreprocessor

#other utilities and packages
import torch

import pandas as pd

from pathlib import Path
import numpy as np

import pandas as pd

import random

import subprocess

Set up plotting and some helper functions.

#set up plotting

from matplotlib import pyplot as plt
plt.rcParams|['figure.figsize']=[15,5] #for large visuals
$config InlineBackend.figure_format = 'retina'

helper function for displaying a sample as an image

def show_tensor (sample) :
plt.imshow ((sample['X"'][0,:,:]1/24+0.5) -1, cmap="'Greys',vmin=-1, vmax=0)
plt.show ()

Set manual seeds for pytorch and python. These ensure the training results are reproducible. You probably don’t want
to do this when you actually train your model, but it’s useful for debugging.

torch.manual_seed (0)
random. seed (0)

9.1 Preparing audio data

9.1.1 Download labeled audio files
The Kitzes Lab has created a small labeled dataset of short clips of American Woodcock vocalizations. You have two
options for obtaining the folder of data, called woodcock_labeled_data:

1. Run the following cell to download this small dataset. These commands require you to have tar installed on
your computer, as they will download and unzip a compressed file in . tar. gz format.

2. Download a . z1ip version of the files by clicking here. You will have to unzip this folder and place the unzipped
folder in the same folder that this notebook is in.

Note: Once you have the data, you do not need to run this cell again.

subprocess.run(['curl', 'https://pitt.box.com/shared/static/

—79£17d715dulcldsy6buogz02rsnbuesd.gz', '-L', '-o', 'woodcock_labeled_data.tar.gz'l) #,
—Download the data

subprocess.run(["tar","-xz£f", "woodcock_labeled_data.tar.gz"]) # Unzip the downloaded,,
—tar.gz file

subprocess.run(["rm", "woodcock_ labeled_data.tar.gz"]) # Remove the file after its_

—contents are unzipped

70 Chapter 9. Custom preprocessing

https://pitt.box.com/shared/static/m0cmzebkr5qc49q9egxnrwwp50wi8zu5.zip

opensoundscape, Release 0.6.2

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 ==g==g=—= ==g==g== ==g==g== 0
0 0 0 0 0 0 0 0 ==g==3== ==g==3== ==g==3== 0
100 7 0 7 0 0 5 0 ==g==3== 0300301 ==g==3== 0
100 4031k 100 4031k 0 0 1520k 0 0:00:02 0:00:02 ——:——:—— 5069k
CompletedProcess (args=['rm', 'woodcock_labeled_data.tar.gz'], returncode=0)

9.1.2 Generate one-hot encoded labels

The folder contains 2s long audio clips taken from an autonomous recording unit. It also contains a file
woodcock_labels.csv which contains the names of each file and its corresponding label information, created
using a program called Specky.

We manipulate the label dataframe to give “one hot” labels - that is, a column for every class, with 1 for present or O for
absent in each sample’s row. In this case, our classes are simply ‘negative’ for files without a woodcock and ‘positive’
for files with a woodcock. Note that these classes are mutually exclusive, so we have a “single-target” problem (as
opposed to a “multi-target” problem where multiple classes can simultaneously be present).

For more details on the steps below, see the basic CNN training and prediction tutorial.

#load Specky output: a table of labeled audio files

specky_table = pd.read_csv (Path ("woodcock_labeled_data/woodcock_labels.csv"))

#update the paths to the audio files

specky_table.filename = ['./woodcock_labeled _data/'+f for f in specky_table.filename]

from opensoundscape.annotations import categorical_to_one_hot

one_hot_labels, classes = categorical_to_one_hot (specky_table[['woodcock']].values)
labels = pd.DataFrame (index=specky_table['filename'],data=one_hot_labels,
—columns=classes)

labels.head()

absent present
filename
./woodcock_labeled_data/d4c40b6066b489518f8da83...
./woodcock_labeled data/e84a4b60ad4f2d049d73162e. ..
./woodcock_labeled_data/79678c979%9ebb880d5ed6d56. . .
./woodcock_labeled_data/49890077267b569e142440f. ..
./woodcock_labeled_data/0c453a87185d8c7ce05c5c5. ..

oo or o
B e o

9.2 Intro to Preprocessors

Preprocessors prepare samples for use by machine learning algorithms by stringing together transformations called
Actions into a Pipeline. The preprocessor sequentially applies to the sample each Action in the Pipeline. You can
add, remove, and rearrange Actions from the pipeline and change the parameters of each Action.

The currently implemented Preprocessor classes and their Actions include:

* CnnPreprocessor - loads audio files, creates spectrograms, performs various augmentations, and returns a
pytorch Tensor.

* AudioToSpectrogramPreprocessor - loads audio files, creates spectrograms, and returns a pytorch
Tensor (no augmentation).

9.2. Intro to Preprocessors 71

https://github.com/rhine3/specky

opensoundscape, Release 0.6.2

9.2.1 Initialize preprocessor

A Preprocessor must be initialized with a very specific dataframe:
* the index of the dataframe provides paths to audio samples
* the columns are the class names
* the values are 0 (absent/False) or 1 (present/True) for each sample and each class.

For example, we’ve set up the labels dataframe with files as the index and classes as the columns, so we can use it to
make an instance of CnnPreprocessor:

from opensoundscape.preprocess.preprocessors import CnnPreprocessor

preprocessor = CnnPreprocessor (labels)

9.2.2 Access sample from a Preprocessor

A sample is accessed in a preprocessor using indexing, like a list. Each sample is a dictionary with two keys: ‘X’, the
Tensor of the sample, and ‘y’, the Tensor of labels of the sample.

: preprocessor[0]

{'X': tensor([[[O0.0000, ©0.0000, ©0.0000, ..., 0.0191, -0.0078, 0.0653],

[0.0000, O0.0000, O0.0000, ..., 0.0958, 0.0501, 0.0597],

[0.0000, ©0.0000, 0.0000, ..., 0.3639, 0.1509, 0.0387],

[0.0000, O0.0000, O0.0000, ..., 0.0000, 0.0000, 0.00007,

([0.0000, ©0.0000, 0.0000, ..., 0.0000, ©0.0000, 0.0000],

[0.0000, ©0.0000, O0.0000, ..., 0.0000, 0.0000, 0.000011,
([0.0000, ©0.0000, ©0.0000, ..., -0.0090, -0.0230, 0.07431,

[0.0000, O0.0000, O0.0000, ..., 0.1073, 0.0300, 0.0806],

[0.0000, ©0.0000, ©0©.000O, ..., 0.3479, 0.1474, 0.0241],

[0.0000, O0.0000, O0.0000, ..., 0.0000, 0.0000, 0.0000],

[0.0000, ©0.0000, O0.0000O, ..., 0.0000, 0.0000, 0.00007,

([0.0000, ©0.0000, ©0.0000, ..., 0.0000, ©0.0000, 0.000011,
[[0.0000, ©0.0000, ©.0000, ..., 0.0079, -0.0237, 0.0630],

([0.0000, ©0.0000, 0.0000, ..., 0.0936, 0.0200, 0.0808],

[0.0000, ©0.0000, ©0.0000, ..., 0.3740, 0.1541, 0.0166],

([0.0000, ©0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],

[0.0000, O0.0000, O0.0000, ..., 0.0000, 0.0000, 0.0000],

[0.0000, ©0.0000, O0.0000, ..., 0.0000, 0.0000, 0.0000111),

'y': tensor ([0, 1])}

9.2.3 Subset samples from a Preprocessor

Preprocessors allow you to select a subset of samples using sample () and head () methods (like Pandas
DataFrames). For example:

len (preprocessor)

72 Chapter 9. Custom preprocessing

[12]:

[12]:

opensoundscape, Release 0.6.2

29

Select the first 10 samples (non-random)

len (preprocessor.head (5))

5

Randomly select an absolute number of samples

len (preprocessor.sample (n=10))

10

Randomly select a fraction of samples

len (preprocessor.sample (frac=0.5))

14

9.3 Pipelines and actions

Each Preprocessor class has two attributes, preprocessor.pipeline and preprocessor.actions.
Pipelines are comprised of Actions.

9.3.1 About Pipelines

The preprocessor’s Pipeline is the ordered list of Actions that the preprocessor performs on each sample.
* The Pipeline is stored in the preprocessor.pipeline attribute.

* You can modify the contents or order of Preprocessor Actions by overwriting the preprocessor’s .pipeline
attribute. When you modify this attribute, you must provide a list of Actions, where each Action is an instance
of a class that sub-classes opensoundscape.preprocess.BaseAction

Inspect the current pipeline.

inspect the current pipeline (ordered sequence of Actions to take)
preprocessor.pipeline

[<opensoundscape.preprocess.actions.AudioLoader at 0x7fba9d6a7ed0>,
<opensoundscape.preprocess.actions.AudioTrimmer at 0x7fba9d6a78d0>,
<opensoundscape.preprocess.actions.AudioToSpectrogram at 0x7fba9d6a7590>,
<opensoundscape.preprocess.actions.SpectrogramBandpass at 0x7fba%9d6a7d10>,
<opensoundscape.preprocess.actions.SpecToImg at 0x7fba9d67ebd0>,
<opensoundscape.preprocess.actions.BaseAction at 0x7fba9d6afb50>,
<opensoundscape.preprocess.actions.TorchColorJitter at 0x7fba9d64d850>,
<opensoundscape.preprocess.actions.ImgToTensor at 0x7fba9d64d690>,
<opensoundscape.preprocess.actions.TimeMask at O0x7fba9d6dc9d0>,
<opensoundscape.preprocess.actions.FrequencyMask at 0x7fba9de6dc990>,
<opensoundscape.preprocess.actions.TensorAddNoise at 0x7fba9d6dc650>,
<opensoundscape.preprocess.actions.TensorNormalize at 0x7fba9d64d6d0>,
<opensoundscape.preprocess.actions.TorchRandomAffine at 0x7fba9dédc690>]

9.3. Pipelines and actions 73

opensoundscape, Release 0.6.2

9.3.2 About actions

Preprocessors come with a set of predefined Actions that are available to the preprocessor. These are not necessarily
all included in the preprocessing pipeline; these are just the transformations that are available to be strung together
into a pipeline if desired.

e The Actions are stored in the preprocessor.actions attribute. Each Action is an instance of a class
(described in more detail below).

» Each Action takes a sample (and its labels), performs some transformation to them, and returns the sample (and
its labels). The code for this transformation is stored in the Action’s . go () method.

* You can customize Actions using the .on () and .off () methods to turn the Action on or off, or by
changing the action’s parameters. Any customizable parameters for performing the Action are stored in a
dictionary, .params. This dictionary can be modified using the Action’s .set () method, e.g. action.
set (param=value, param2=value2, ...).

* You can view all the available Actions in a preprocessor using the . 1ist_actions () method.

create a new instance of a CnnPreprocessor
preprocessor = AudioToSpectrogramPreprocessor (labels)

print all Actions that have been added to the preprocessor
(Note that this is not the pipeline, just a collection of available actions)
preprocessor.actions.list_actions()

['load_audio',
'trim_audio',
'to_spec',
'bandpass’',
'to_img',
'to_tensor',
'normalize']

Notice that the Actions in preprocessor.actions.list_actions () are notidentical to the names listed in
the pipeline, but are parallel. For example, in this case, preprocessor.actions.to_spec corresponds to an
instance of opensoundscape.preprocess.actions.AudioToSpectrogram:

preprocessor.actions.to_spec

<opensoundscape.preprocess.actions.AudioToSpectrogram at 0x7fba9d6ab210>

That’s because of the structure of actions:
e The .actions attribute is an instance of a class called ActionContainer (see below)

e The ActionContainer has an attribute for each possible action, e.g. preprocessor.actions.
to_spec

« Each attribute is defined as an instance of an Action class, e.g. AudioToSpectrogram

» Each Action class is a child of a class called BaseAction; see the act ions module for examples.

preprocessor.actions?

Type: ActionContainer

String form: <opensoundscape.preprocess.actions.ActionContainer object at,
—~0x7fba%a836a90>

File: ~/opt/miniconda3/envs/opso_py37/1lib/python3.7/site-packages/

—opensoundscape/preprocess/actions.py
Docstring:

(continues on next page)

74 Chapter 9. Custom preprocessing

opensoundscape, Release 0.6.2

(continued from previous page)

this is a container object which holds instances of Action child-classes
the Actions it contains each have .go(), .on(), .off(), .set(), .get()

The actions are un-ordered and may not all be used. In preprocessor objects
such as AudioToSpectrogramPreprocessor, Actions from the action
container are listed in a pipeline(list), which defines their order of use.

To add actions to the container: action_container.loader = AudioLoader ()
To set parameters of actions: action_container.loader.set (param=value,...)

Methods: list_actions ()

9.4 Modifying Actions

9.4.1 View default parameters for an Action

The docstring for an individual action, such as preprocessor.actions.to_spec, gives information on what
parameters can be changed and what the defaults are.

preprocessor.actions.to_spec?

Type: AudioToSpectrogram

String form: <opensoundscape.preprocess.actions.AudioToSpectrogram object at,,
—0x7fba%d6ab210>

File: ~/opt/miniconda3/envs/opso_py37/1lib/python3.7/site-packages/
—opensoundscape/preprocess/actions.py

Docstring:

Action child class for Spectrogram.from_audio() (Audio —-> Spectrogram)

see spectrogram.Spectrogram.from_audio for documentation

Args:

window_type="hann": see scipy.signal.spectrogram docs for description of window,_,
—parameter

window_samples=512: number of audio samples per spectrogram window (pixel)

overlap_samples=256: number of samples shared by consecutive windows

decibel_limits = (-100,-20) : limit the dB wvalues to (min,max) (lower values set,,
—to min, higher values set to max)

dB_scale=True : If True, rescales values to decibels, x=10%x1ogl0 (x)

- i1if dB_scale is False, decibel_limits is ignored

Any defaults that have been changed will be shown in the . params attribute of the action:

preprocessor.actions.to_spec.params

{}

9.4.2 Modify Action parameters

In general, Actions are modified using the set () method, e.g.:

9.4. Modifying Actions 75

[20] :

[21]:

[1:

opensoundscape, Release 0.6.2

preprocessor.actions.to_spec.set (window_samples=256)

We can check that the values were actually changed by printing the action’s params. This is not guaranteed to print

the defaults, but will definitely print the parameters that have actively changed.

print (preprocessor.actions.load_audio.params)

{'sample_rate': None}

9.4.3 Turn individual Actions on or off

Each Action has .on () and .off () methods which toggle a bypass of the Action in the pipeline
Actions will still remain in the same order in the pipeline, and can be turned back on again if desired.

#initialize a preprocessor that includes augmentation
preprocessor = CnnPreprocessor (labels)
preprocessor.pipeline

[<opensoundscape.preprocess.actions.AudioLoader at 0x7fba9d876850>,
<opensoundscape.preprocess.actions.AudioTrimmer at 0x7fba9d876890>,
<opensoundscape.preprocess.actions.AudioToSpectrogram at 0x7fba%9d8768d0>,
<opensoundscape.preprocess.actions.SpectrogramBandpass at 0x7fba9d876910>,
<opensoundscape.preprocess.actions.SpecToImg at 0x7fba9d876950>,
<opensoundscape.preprocess.actions.BaseAction at 0x7fba9d876a50>,
<opensoundscape.preprocess.actions.TorchColorJitter at 0x7fba9d876a90>,
<opensoundscape.preprocess.actions.ImgToTensor at 0x7fba9d8769d0>,
<opensoundscape.preprocess.actions.TimeMask at O0x7fba9d6f2e90>,
<opensoundscape.preprocess.actions.FrequencyMask at 0x7fba9d876b10>,
<opensoundscape.preprocess.actions.TensorAddNoise at 0x7fba9d876b50>,
<opensoundscape.preprocess.actions.TensorNormalize at 0x7fba9d876al0>,
<opensoundscape.preprocess.actions.TorchRandomAffine at 0x7fba9d876ad0>]

#turn off augmentations other than noise
preprocessor.actions.color_jitter.off ()
preprocessor.actions.add_noise.off ()
preprocessor.actions.time_mask.off ()
preprocessor.actions.frequency_mask.off ()
preprocessor.pipeline

[<opensoundscape.preprocess.actions.AudioLoader at 0x7fba9d876850>,
<opensoundscape.preprocess.actions.AudioTrimmer at 0x7fba9d876890>,
<opensoundscape.preprocess.actions.AudioToSpectrogram at 0x7fba9%9d8768d0>,
<opensoundscape.preprocess.actions.SpectrogramBandpass at 0x7fba9d876910>,
<opensoundscape.preprocess.actions.SpecToImg at 0x7fba9d876950>,
<opensoundscape.preprocess.actions.BaseAction at 0x7fba9d876a50>,
<opensoundscape.preprocess.actions.TorchColorJitter at 0x7fba9d876a90>,
<opensoundscape.preprocess.actions.ImgToTensor at 0x7fba9d8769d0>,
<opensoundscape.preprocess.actions.TimeMask at 0x7fba9d6f2e90>,
<opensoundscape.preprocess.actions.FrequencyMask at 0x7fba9d876bl0>,
<opensoundscape.preprocess.actions.TensorAddNoise at 0x7fba9d876b50>,
<opensoundscape.preprocess.actions.TensorNormalize at 0x7fba9d876al0>,
<opensoundscape.preprocess.actions.TorchRandomAffine at 0x7fba9d876ad0>]

print ('random affine on')
show_tensor (preprocessor[0])

. Note that the

(continues on next page)

76 Chapter 9. Custom preprocessing

opensoundscape, Release 0.6.2

(continued from previous page)

print ('random affine off'")
preprocessor.actions.random_affine.off ()
show_tensor (preprocessor[0])

To view whether an individual Action in a pipeline is on or off, inspect its bypass attribute:

The AudioLoader Action that is still on
preprocessor.pipeline[0] .bypass

The TorchRandomAffine Action that we turned off
preprocessor.pipeline[-1] .bypass

9.5 Modifying the pipeline

Sometimes, you may want to change the order or composition of the Preprocessor’s pipeline. You can simply overwrite
the .pipeline attribute, as long as the new pipeline is still a list of Action instances from the preprocessor’s .
actions ActionContainer.

9.5.1 Example: return Spectrogram instead of Tensor

Here’s an example where we replace the pipeline with one that just loads audio and converts it to a Spectrogram,
returning a Spectrogram instead of a Tensor:

#initialize a preprocessor

preprocessor = AudioToSpectrogramPreprocessor (labels)
print ('original pipeline:")

[print (p) for p in preprocessor.pipeline]

#overwrite the pipeline with a slice of the original pipeline
print ('\nnew pipeline:")
preprocessor.pipeline = preprocessor.pipeline[0:3]

[print (p) for p in preprocessor.pipeline]

print ('\nwe now have a preprocessor that returns Spectrograms instead of Tensors:')
print (type (preprocessor[0] ['X']))
preprocessor [0] ['X'].plot ()

9.5.2 Example: custom augmentation pipeline
Here’s an example where we add a new Action to the Action container, then overwrite the preprocessing pipeline with
one that includes our new action.

Note that each Action requires a specific input Type and may return that same Type or a different Type. So you’ll need
to be careful about the order of your Actions in your pipeline

This custom pipeline will first performs a Gaussian noise augmentation, then a random affine, then our second noise
augmentation (add_noise_2)

9.5. Modifying the pipeline 77

opensoundscape, Release 0.6.2

#initialize a preprocessor
preprocessor = CnnPreprocessor (labels)

#add a new Action to the Action container
from opensoundscape.preprocess.actions import TensorAddNoise
preprocessor.actions.add_noise_2 = TensorAddNoise (std=0.1)

#overwrite the pipeline with a list of Actions from .actions

preprocessor.pipeline = [
preprocessor.actions.load_audio,
preprocessor.actions.trim_audio,
preprocessor.actions.to_spec,
preprocessor.actions.bandpass,
preprocessor.actions.to_img,
preprocessor.actions.to_tensor,
preprocessor.actions.normalize,
preprocessor.actions.add_noise,
preprocessor.actions.random_affine,
preprocessor.actions.add_noise_2

show_tensor (preprocessor[0])

9.5.3 Use an Action multiple times in a pipeline

If an Action is present multiple times in a pipeline (e.g. multiple overlays), changing the parameters of the Action at
one point in the pipeline will change it at all points in the pipeline. For instance, create a pipeline with multiple “add
noise” steps:

#initialize a preprocessor that includes augmentation
preprocessor = CnnPreprocessor (labels)

Insert another instance of the "add noise" action into the pipeline
preprocessor.pipeline.insert (-2, preprocessor.actions.add_noise)
preprocessor.pipeline

Note that changing the parameter of one of the add_noise steps changes the parameters for both of them.

Print the parameters of both of the TensorAddNoise Actions in the pipeline
print ("Parameters of TensorAddNoise actions before changing:")
[print (f"Params of {p}:", p.params) for p in preprocessor.pipeline[-4:-2]]

Change the parameters of one of the add noise steps
preprocessor.pipeline[-4].set (std=0.01)

The modification above 1is the same as:
#preprocessor.actions.add _noise.set (std=0.01)

See that the parameters for both steps are changed
print ("\nParameters of TensorAddNoise actions after changing:")
[print (f"Params of {p}:", p.params) for p in preprocessor.pipeline[-4:-2]11];

To modify the parameters of Actions individually, add them as separate Actions in the pipeline by adding a new named
action to the action container.

78 Chapter 9. Custom preprocessing

opensoundscape, Release 0.6.2

from opensoundscape.preprocess.actions import TensorAddNoise

Add a new possible action to the ActionContainer
preprocessor.actions.my_new_action = TensorAddNoise (std=0.005)

Replace one of the old actions in the pipeline with the new one with different,,

—parameters
preprocessor.pipeline[-3] = preprocessor.actions.my_new_action

Now notice that the two instances of the TensorAddNoi se action can have different parameters.

[print (f"Params of {p/:", p.params) for p in preprocessor.pipeline[-4:-2]1];

9.6 Customizing AudioToSpectrogramPreprocessor

Below are various examples of how to modify parameters of the Actions of the
AudioToSpectrogramPreprocessor class, including the AudioLoader, AudioToSpectrogram,
and SpectrogramBandpass actions.

9.6.1 Modify the sample rate

Re-sample all loaded audio to a specified rate during the load_audio action

: preprocessor = AudioToSpectrogramPreprocessor (labels)

preprocessor.actions.load_audio.set (sample_rate=24000)

9.6.2 Modify spectrogram window length and overlap

(see Spectrogram.from_audio() for detailed documentation)

: print ('default parameters:')

show_tensor (preprocessor[0])

print ('high time resolution, low frequency resolution:')
preprocessor.actions.to_spec.set (window_samples=64, overlap_samples=32)

show_tensor (preprocessor[0])

9.6.3 Bandpass spectrograms

Trim spectrograms to a specified frequency range:

: preprocessor = AudioToSpectrogramPreprocessor (labels)

print ('default parameters:')
show_tensor (preprocessor[0])

print ('bandpassed to 2-4 kHz:')
preprocessor.actions.bandpass.set (min_f=2000,max_£f=4000)
(continues on next page)

9.6. Customizing AudioToSpectrogramPreprocessor 79

opensoundscape, Release 0.6.2

(continued from previous page)

preprocessor.actions.bandpass.on ()
show_tensor (preprocessor[0])

9.6.4 Change the output image

Change the shape of the output image - note that the shape argument expects (height, width), not (widht, height)

: preprocessor = AudioToSpectrogramPreprocessor (labels)

preprocessor.actions.to_img.set (shape=[500,1000])
show_tensor (preprocessor[0])

9.7 Customizing CnnPreprocessor

The CnnPreprocessor class can be used to perform both audio and spectrogram transformation as well as aug-
mentation for training with CNNSs.

This section describes: * A special method of CnnPreprocessor which allows you to turn all augmentations on
or off * Examples of modifying augmentation parameters for standard augmentations * Detailed descriptions of the
useful “Overlay” augmentation

9.7.1 Turn all augmentation on or off

With CnnPreprocessor, we can easily choose between a pipeline that contains augmentations and a pipeline with
no augmentations using the shortcuts augmentation_off () and augmentation_on () methods. Using these
methods will overwrite any changes made to the pipeline, so apply them first before further customizing an instance
of CnnPreprocessor.

: preprocessor = CnnPreprocessor (labels)

preprocessor.augmentation_off ()
preprocessor.pipeline

: preprocessor.augmentation_on ()

preprocessor.pipeline

9.7.2 Modify augmentation parameters

CnnPreprocessor includes several augmentations with customizable parameters. Here we provide a couple of
illustrative examples - see any action’s documentation for details on how to use its parameters.

#initialize a preprocessor
preprocessor = CnnPreprocessor (labels)

#turn off augmentations other than overlay
preprocessor.actions.color_jitter.off ()
preprocessor.actions.random_affine.off ()
preprocessor.actions.random_affine.off ()
preprocessor.actions.time_mask.off ()

allow up to 20 horizontal masks, each spanning up to 0.lx the height of the image.

(continues on next page)

80 Chapter 9. Custom preprocessing

opensoundscape, Release 0.6.2

(continued from previous page)

preprocessor.actions. frequency_mask.set (max_width = 0.1, max_masks=20)
show_tensor (preprocessor[0])

#turn off frequency mask and turn on gaussian noise
preprocessor.actions.add_noise.on ()
preprocessor.actions. frequency_mask.off ()

increase the intensity of gaussian noise added to the image
preprocessor.actions.add_noise.set (std=0.2)
show_tensor (preprocessor[0])

9.7.3 Overlay augmentation

Overlay is a powerful Action that allows additional samples to be overlayed or blended with the original sample.

The additional samples are chosen from the overlay_df that is provided to the preprocessor when it is initialized.
The index of the overlay_df must be paths to audio files. The dataframe can be simply an index containing audio
files with no other columns, or it can have the same columns as the sample dataframe for the preprocessor.

Samples for overlays are chosen based on their class labels, according to the parameter overlay_class:
* None - Randomly select any file from overlay_df
e "different" - Select a random file from overlay_df containing none of the classes this file contains
* specific class name - always choose files from this class
Samples can be drawn from dataframes in a few general ways (each is demonstrated below):
1. Using a separate dataframe where any sample can be overlayed (overlay_class=None)

2. Using the same dataframe as training, where the overlay class is “different,” i.e., does not contain overlapping
labels with the original sample

3. Using the same dataframe as training, where samples from a specific class are used for overlays

By default, the overlay Action does not change the labels of the sample it modifies. However, if you wish to add the
labels from overlayed samples to the original sample’s labels, you can set update_labels=True (see example
below).

#initialize a preprocessor and provide a dataframe with samples to use as overlays
preprocessor = CnnPreprocessor (labels, overlay_df=labels)

#turn off augmentations other than overlay
preprocessor.actions.color_jitter.off ()
preprocessor.actions.random_affine.off ()
preprocessor.actions.random_affine.off ()
preprocessor.actions.time_mask.off ()
preprocessor.actions. frequency_mask.off ()

Modify overlay weight

We’ll first overlay a random sample with 30% of the final mix coming from the overlayed sample (70% coming from
the original) by using overlay_weight=0. 3.

9.7. Customizing CnnPreprocessor 81

opensoundscape, Release 0.6.2

To demonstrate this, let’s show what happens if we overlay samples from the “negative” class, resulting in the final
sample having a higher or lower signal-to-noise ratio. By default, the overlay Action chooses a random file from the
overlay dataframe. Instead, choose a sample from the class called "absent " using the overlay_class parameter.

: preprocessor.actions.overlay.set (

overlay_class='absent',
overlay_weight=0.3
)

show_tensor (preprocessor[0])

Now use overlay_weight=0.8 to increase the contribution of the overlayed sample (80%) compared to the
original sample (20%).

: preprocessor.actions.overlay.set (overlay_weight=0.8)

show_tensor (preprocessor[0])

Overlay samples from a specific class

As demonstrated above, you can choose a specific class to choose samples from. Here, instead, we choose samples
from the “positive” class.

: preprocessor.actions.overlay.set (

overlay_class="present',
overlay_weight=0.4
)

show_tensor (preprocessor[0])
Overlaying samples from any class

By default, or by specifying overlay_class=None, the overlay sample is chosen randomly from the overlay_df
with no restrictions

: preprocessor.actions.overlay.set (overlay_class=None)

show_tensor (preprocessor[0])

Overlaying samples from a “different” class

The 'different’' option for overlay_class chooses a sample to overlay that has non-overlapping labels with
the original sample.

In the case of this example, this has the same effect as drawing samples from the "negative™" class a demonstrated
above. In multi-class examples, this would draw from any of the samples not labeled with the class(es) of the original
sample.

We’ll again use overlay_weight=0. 8 to exaggerate the importance of the overlayed sample (80%) compared to
the original sample (20%).

: preprocessor.actions.overlay.set (update_labels=False,overlay_class='different',

—overlay_weight=0.8)
show_tensor (preprocessor[0])

82 Chapter 9. Custom preprocessing

opensoundscape, Release 0.6.2

Updating labels

By default, the overlay Action does not change the labels of the sample it modifies.

For instance, if the overlayed sample has labels [1,0] and the original sample has labels [0,1], the default behavior will
return a sample with labels [0,1] not [1,1].

If you wish to add the labels from overlayed samples to the original sample’s labels, you can set
update_labels=True.

: print ('default: labels do not update')

preprocessor.actions.overlay.set (update_labels=False,overlay_class='different')
print (f"\t resulting labels: {preprocessor[0]['y'].numpy () /")

print ('Using update_labels=True')
preprocessor.actions.overlay.set (update_labels=True,overlay_class='different')
print (f"\t resulting labels: {preprocessor[0]['y'].numpy() /")

This example is a single-target problem: the two classes represent “woodcock absent” and “woodcock present.” Be-
cause the labels are mutually exclusive, labels [1,1] do not make sense. So, for this single-target problem, we would
not want to use update_labels=True, and it would probably make most sense to only overlay absent recordings,
e.g.,overlay_class='absent'.

9.8 Creating a new Preprocessor class

If you have a specific augmentation routine you want to perform, you may want to create your own Preprocessor class
rather than modifying an existing one.

Your subclass might add a different set of Actions, define a different pipeline, or even override the __getitem_
method of BasePreprocessor.

Here’s an example of a customized preprocessor that subclasses AudioToSpectrogramPreprocessor and
creates a pipeline that depends on the magic_parameter input.

from opensoundscape.preprocess.actions import TensorAddNoise
class MyPreprocessor (AudioToSpectrogramPreprocessor) :
"""Child of AudioToSpectrogramPreprocessor with weird augmentation routine"""

def _ init_ (
self,
df,
magic_parameter,
audio_length=None,
return_labels=True,
out_shape=[224, 2247,

super (MyPreprocessor, self).__init__ (
df,
audio_length=audio_length,
out_shape=out_shape,
return_labels=return_labels,

self.actions.add_noise = TensorAddNoise (std=0.lxmagic_parameter)

(continues on next page)

9.8. Creating a new Preprocessor class 83

(

1:

opensoundscape, Release 0.6.2

(continued from previous page)

self.pipeline = [
self.actions.load_audio,
self.actions.trim_audio,
self.actions.to_spec,
self.actions.bandpass,
self.actions.to_img,
self.actions.to_tensor,
self.actions.normalize,
] + [self.actions.add_noise for i in range (magic_parameter)]

p = MyPreprocessor (labels, magic_parameter=2)
show_tensor (p[0])

p = MyPreprocessor (labels, magic_parameter=3)
show_tensor (p[0])

9.9 Defining new Actions

You can define new Actions to include in your Preprocessor pipeline. They should subclass opensoundscape.
actions.BaseAction.

You will need to define a . go () method for all actions. If you provide default parameter values, you will also need
todefinean __init__ () method.

9.9.1 Without default parameters

If the Action does not need to have default arguments, it’s trivial to create by defining a go () method.

from opensoundscape.preprocess.actions import BaseAction
class SquareSamples (BaseAction):
"""Square values of every audio sample

Audio in, Audio out
mmwn

def go(self, audio):
samples = np.array(audio.samples) xx2
return Audio (samples, audio.sample_rate)

Test it out:

from opensoundscape.audio import Audio
square_action = SquareSamples (threshold=0.2)

audio = Audio.from_file('./woodcock_ labeled_data/01c5d0c90bd4652f308fd9c73feblbf5.wav
")

print (np.mean (audio.samples))

audio = square_action.go (audio)

print (np.mean (audio.samples))

84 Chapter 9. Custom preprocessing

opensoundscape, Release 0.6.2

9.9.2 With default parameters

Here we overwrite the __init___ method to provide a default parameter value. The Action below removes low-
amplitude audio samples, acting somewhat as a “denoiser”.

class AudioGate (BaseAction) :
"""Replace audio samples below a threshold with 0

Audio in, Audio out

Args:
threshold: sample values below this will become 0

mmn

def _ init__ (self, xxkwargs):
super (AudioGate, self).__init__ (xxkwargs)

default parameters
self.params["threshold"] = 0.1

update/add any parameters passed to __init___
self.params.update (kwargs)

def go(self, audio):
samples = np.array ([0 if np.abs(s)<self.params["threshold"] else s for s in_
—audio.samples])
return Audio (samples, audio.sample_rate)

Test it out:

gate_action = AudioGate (threshold=0.2)

print ('histogram of samples')

audio = Audio.from file('./woodcock_labeled_data/01c5d0c90bd4652£308fd9¢c73feblbf5.wav
—")

_ = plt.hist (audio.samples,bins=100)

plt.semilogy ()

plt.show ()

print ('histogram of samples after audio gate')
audio_gated = gate_action.go (audio)

_ = plt.hist (audio_gated.samples,bins=100)
plt.semilogy ()

Clean up files created during this tutorial:

import shutil
shutil.rmtree ('./woodcock_ labeled_data')

9.9. Defining new Actions 85

opensoundscape, Release 0.6.2

86 Chapter 9. Custom preprocessing

cHAaPTER 10

Advanced CNN training

This notebook demonstrates how to use classes from opensoundscape.torch.models.cnn and architectures
created using opensoundscape.torch.architectures.cnn_architecturesto

choose between single-target and multi-target model behavior

modify learning rates, learning rate decay schedule, and regularization
choose from various CNN architectures

train a multi-target model with a special loss function

use strategic sampling for imbalanced training data

customize preprocessing: train on spectrograms with a bandpassed frequency range

Rather than demonstrating their effects on training (model training is slow!), most examples in this notebook either
don’t train the model or “train” it for O epochs for the purpose of demonstration.

For introductory demos (basic training, prediction, saving/loading models), see the “Beginner-friendly training and
prediction with CNNs” tutorial (cnn.ipynb).

from opensoundscape.preprocess import preprocessors
from opensoundscape.torch.models import cnn
from opensoundscape.torch.architectures import cnn_architectures

import torch

import pandas as pd
from pathlib import Path
import numpy as np
import random

import subprocess

from matplotlib import pyplot as plt
plt.rcParams|['figure.figsize']=[15,5] #for big visuals
%config InlineBackend.figure_format = 'retina'

87

tutorials/cnn.html
tutorials/cnn.html

opensoundscape, Release 0.6.2

10.1 Prepare audio data

10.1.1 Download labeled audio files

The Kitzes Lab has created a small labeled dataset of short clips of American Woodcock vocalizations. You have two
options for obtaining the folder of data, called woodcock_labeled_data:

1. Run the following cell to download this small dataset. These commands require you to have tar installed on
your computer, as they will download and unzip a compressed file in . tar. gz format.

2. Download a . z1ip version of the files by clicking here. You will have to unzip this folder and place the unzipped
folder in the same folder that this notebook is in.

If you already have these files, you can skip or comment out this cell

subprocess.run(['curl', 'https://pitt.box.com/shared/static/
—79f17d715dulcldsy6buogz02rsn5uesd.gz', '-L', '-o', 'woodcock_labeled_data.tar.gz'l) #
—Download the data

subprocess.run(["tar","-xz£f", "woodcock_labeled_data.tar.gz"]) # Unzip the downloaded,,
—~tar.gz file

subprocess.run(["rm", "woodcock_labeled_data.tar.gz"]) # Remove the file after its_
—contents are unzipped

[

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 ==g==3== ==3==3== ==g==3== 0
0 0 0 0 0 0 0 0 ==g==8g== ==3==g== ==g==3== 0
100 7 0 7 0 0 6 0 ==g==3== 0300301l ==g==3== 0
100 4031k 100 4031k 0 0 1405k 0 0:00:02 0:00:02 ——:——:—— 3158k
CompletedProcess (args=['rm', 'woodcock_labeled_data.tar.gz'], returncode=0)

10.1.2 Create one-hot encoded labels

See the “Basic training and prediction with CNNs” tutorial for more details.

The audio data includes 2s long audio clips taken from an autonomous recording unit and a CSV of labels. We
manipulate the label dataframe to give “one hot” labels - that is, a column for every class, with 1 for present or O for
absent in each sample’s row. In this case, our classes are simply ‘negative’ for files without a woodcock and ‘positive’
for files with a woodcock. Note that these classes are mutually exclusive, so we have a “single-target” problem (as
opposed to a “multi-target” problem where multiple classes can simultaneously be present).

For more details on the steps below, see the “basic training and prediction with CNNs” tutorial.

#load Specky output: a table of labeled audio files

specky_table = pd.read_csv (Path ("woodcock_labeled_data/woodcock_labels.csv"))

#update the paths to the audio files

specky_table.filename = ['./woodcock_labeled data/'+f for f in specky_table.filename]

from opensoundscape.annotations import categorical_to_one_hot

one_hot_labels, classes = categorical_to_one_hot (specky_table[['woodcock']].values)
labels = pd.DataFrame (index=specky_table['filename'],data=one_hot_labels,
—columns=classes)

labels.head()

absent present
filename

(continues on next page)

88 Chapter 10. Advanced CNN training

https://pitt.box.com/shared/static/m0cmzebkr5qc49q9egxnrwwp50wi8zu5.zip

opensoundscape, Release 0.6.2

(continued from previous page)

./woodcock_labeled_data/d4c40b6066b489518f8das83. ..
./woodcock_labeled_data/e84a4b60adf2d049d73162e...
./woodcock_labeled_data/79678c979%9ebb880d5ed6d56. . .
./woodcock_labeled _data/49890077267b569e142440f. ..
./woodcock_labeled_data/0c453a87185d8c7cel05c5c¢5. ..

oo or o
B R e o

10.1.3 Split into train and validation sets

Randomly split the data into training data and validation data.

from sklearn.model_selection import train_test_split

train_df, valid _df = train_test_split (labels, test_size=0.2, random_state=0)
for multi-class need at least a few images for each batch

len(train_df)

23

10.1.4 Create Preprocessors

Preprocessors take the audio data specified by the dataframe created above and prepare it for use by Pytorch, e.g.,
creating spectrograms and performing augmentation. The class CnnPreprocessor contains a set of preprocessing and
augmentation parameters that we have developed as a good starting point for general bioacoustics recognition prob-
lems. You can modify the preprocessing and augmentation parameters after creating the object. For more detail, see
the “Basic training and prediction with CNNs” tutorial and the “Custom preprocessors” tutorial.

train_dataset = preprocessors.CnnPreprocessor (train_df, overlay_df=train_df)

valid_dataset = preprocessors.CnnPreprocessor (valid_df, overlay_df=valid_df, return_
—labels=True)

train_dataset.audio_length

10.2 Creating a model

In general, we initialize a model object by providing the architecture object (ie a pytorch model) and a list of classes.

arch = cnn_architectures.resnet50 (num_classes=len(classes))
model = cnn.PytorchModel (arch,classes)

created PytorchModel model object with 2 classes

Alternatively, we can specify the name of an architecture as a string (see Cnn Architectures below for details)

: model = cnn.PytorchModel ('resnetl8',classes)

created PytorchModel model object with 2 classes

10.2.1 Single-target versus multi-target

One important decision is whether your model is single-target (exactly one label per sample) or multi-target (any
number of labels per sample, including 0). Single-target models have a softmax activation layer which forces the sum

10.2. Creating a model 89

[117]:

opensoundscape, Release 0.6.2

of all class scores to be 1.0. By default, models are created as multi-target, but you can set single_target=True
either when creating the object or afterwards.

#change the model to be single target
model.single_target = True

#or specify single_target when you create the object
model = cnn.PytorchModel (arch,classes, single_target=True)

created PytorchModel model object with 2 classes

10.3 Model training parameters

We can modify various parameters about model training, including:
* The learning rate
* The learning rate schedule
* Weight decay for regularization

Let’s take a peek at the current parameters, stored in a dictionary.

: model.optimizer_params

{'"lr': 0.01, '"momentum': 0.9, 'weight_decay': 0.0005}

10.3.1 Learning rates

The learning rate determines how much the model’s weights change every time it calculates the loss function.

Faster learning rates improve the speed of training and help the model leave local minima as it learns to classify, but if
the learning rate is too fast, the model may not successfully fit the data or its fitting might be unstable.

Often after training a model for a while at a relatively high learning rate (think 0.01), we might want to “fine tune” the
model by training for a few epochs with a lower learning rate. Let’s set a low learning rate for fine tuning:

model .optimizer_params['lr']=0.001

10.3.2 Separate learning rates for feature and classifier blocks

In the Resnet18Multiclass and Resnet18Binary classes, we can modify the learning rates for the feature
extration and classification blocks of the network separately. For example, we can specify a relatively fast learning
rate for classifier and slower one for features, if we think the features from a pre-trained model are close to optimal
but we have a different set of classes than the pre-trained model.

r18_model = cnn.Resnetl8Binary(classes)

print (rl8_model.optimizer_params)

rl18_model.optimizer_ params|['feature']['lr'] = 0.001
r18_model.optimizer_ params|['classifier']['lr'] = 0.01

created PytorchModel model object with 2 classes
{'feature': {'lr': 0.001, 'momentum': 0.9, 'weight_decay': 0.0005}, 'classifier': {'lr
—': 0.01, 'momentum': 0.9, 'weight_decay': 0.0005}}

90 Chapter 10. Advanced CNN training

[14]:

[15]:

[16]:

opensoundscape, Release 0.6.2

10.3.3 Learning rate schedule

It’s often helpful to decrease the learning rate over the course of training. By reducing the amount that the model’s
weights are updated as time goes on, this causes the learning to gradually switch from coarsely searching across
possible weights to fine-tuning the weights.

By default, the learning rates are multiplied by 0.7 (the learning rate “cooling factor”) once every 10 epochs (the
learning rate “update interval”).

Let’s modify that for a very fast training schedule, where we want to multiply the learning rates by 0.1 every epoch.

: model.lr cooling_factor = 0.1

model.lr_ update_interval = 1

10.3.4 Regularization weight decay

Pytorch optimizers perform L2 regularization, giving the optimizer an incentive for the model to have small weights
rather than large weights. The goal of this regularization is to reduce overfitting to the training data by reducing the
complexity of the model.

Depending on how much emphasis you want to place on the L2 regularization, you can change the weight decay
parameter. By default, it is 0.0005. The higher the value for the “weight decay” parameter, the more the model
training algorithm prioritizes smaller weights.

model.optimizer_params|['weight_decay']1=0.001

10.4 Selecting CNN architectures

The "~ opensoundscape.torch.architectures.cnn_architectures <https:/github.com/kitzeslab/
opensoundscape/blob/master/opensoundscape/torch/architectures/cnn_architectures.py>‘__ module provides func-
tions to create several common CNN architectures. These architectures are built in to pytorch, but the OpenSoundscape
module helps us out by reshaping the final layer to match the number of classes we have.

You could also create a custom architecture by subclassing an existing pytorch model or writing one from scratch
(the minimum requirement is that it subclasses torch.nn.Module - it should at least have . forward () and
.backward () methods.

In general, we can create any pytorch model architecture and pass it to the architecture argument when creating
a model in opensoundscape. We can choose whether to use pre-trained (ImageNet) weights or start from scratch
(use_pretrained=False for random weights). For instance, lets create an alexnet architecture with random
weights:

my_arch = cnn_architectures.alexnet (num_classes=len(classes),use_pretrained=False)

For convenience, we can also initialize a model object by providing the name of an architecture as a string,
rather than the architecture object. For a list of valid architecture names, use cnn_architectures.
list_architectures (). Note that these will use default architecture parameters, including using pre-trained
ImageNet weights.

print (cnn_architectures.list_architectures())

['resnetl8', 'resnet34', 'resnet50', 'resnetlO0l', 'resnetl52', 'alexnet', 'vggll_bn',
—'squeezenetl_ 0', 'densenetl2l', 'inception_v3']

10.4. Selecting CNN architectures 91

https://developers.google.com/machine-learning/crash-course/regularization-for-simplicity/l2-regularization
https://github.com/kitzeslab/opensoundscape/blob/master/opensoundscape/torch/architectures/cnn_architectures.py
https://github.com/kitzeslab/opensoundscape/blob/master/opensoundscape/torch/architectures/cnn_architectures.py

[17]:

[187]:

opensoundscape, Release 0.6.2

model = cnn.PytorchModel (architecture="'resnetl8',classes=classes)

created PytorchModel model object with 2 classes

10.4.1 Pretrained weights

In OpenSoundscape, by default, model architectures are initialized with weights pretrained on the ImageNet image
database. It takes some time for pytorch to download these weights from an online repository the first time an instance
of a particular architecture is created with pretrained weights - pytorch will do this automatically and only once.

Using pretrained weights often speeds up training significantly, as the representation learned from ImageNet is a good
start at beginning to interpret spectrograms, even though they are not true “pictures.”

If you prefer not to use pre-trained weights, or if you don’t have an internet connection, you can specify
use_pretrained argument to False, when creating an architecture:

arch = cnn_architectures.alexnet (num_classes=10,use_pretrained=False)

10.4.2 Freezing the feature extractor

Convolutional Neural Networks can be thought of as having two parts: a feature extractor which learns how to
represent/”see” the input data, and a classifier which takes those representations and transforms them into predictions
about the class identity of each sample.

You can freeze the feature extractor if you only want to train the final classification layer of the network but not modify
any other weights. This could be useful for applying pre-trained classifiers to new data, i.e. “transfer learning”. To do
so, set the freeze_feature_extractor argument to True when you create an architecture.

See "InceptionV3 architecture" section below for more information
arch = cnn_architectures.resnet50 (num_classes=10, freeze_feature_extractor=True, use_
—pretrained=False)

10.4.3 InceptionV3 class
The Inception architecture requires slightly different training and preprocessing from the ResNet architectures and the
other architectures implemented in OpenSoundscape (see below), because:

1) the input image shape must be 299x299, and

2) Inception’s forward pass gives output + auxiliary output.

The InceptionV3 class in cnn handles the necessary modifications in training and prediction for you, but you’ll need
to make sure to pass images of the correct shape from your Preprocessor. Here’s an example:

from opensoundscape.torch.models.cnn import InceptionV3

#generate an Inception model
model = InceptionV3(classes=classes,use_pretrained=False)

#create a copy of the training dataset from above
inception_dataset = train_dataset.sample (frac=1)

#modify the preprocessor to give 299x299 image shape
inception_dataset.actions.to_img.set (shape=[299,299])

(continues on next page)

92 Chapter 10. Advanced CNN training

https://www.image-net.org/

[22]:

opensoundscape, Release 0.6.2

(continued from previous page)

#train and validate for 1 epoch
#note that Inception will complain if batch_size=1
model.train (inception_dataset, inception_dataset, epochs=0,batch_size=4)

#predict
preds, _, _ = model.predict (inception_dataset)

/Users/SML161/opt/miniconda3/envs/opso_py37/1lib/python3.7/site-packages/torchvision/
—models/inception.py:83: FutureWarning: The default weight initialization of
—~inception_v3 will be changed in future releases of torchvision. If you wish to keep,
—the old behavior (which leads to long initialization times due to scipy/scipy
—#11299), please set init_weights=True.

' due to scipy/scipy#11299), please set init_weights=True.', FutureWarning)

created PytorchModel model object with 2 classes

Best Model Appears at Epoch 0 with F1 0.000.
(23, 2)

10.4.4 Changing the architecture of an existing model

The architecture is stored in the model object’s .newtork attribute. We can access parameters of the network or
even replace it entirely:

#initialize the AlexNet architecture
new_arch = cnn_architectures.densenetl2l (num_classes=2, use_pretrained=False)

replace the alexnet architecture with the densenet architecture
model .network = new_arch

10.5 Sampling for imbalanced training data

The imbalanced data sampler will help to ensure that a single batch contains only a few classes during training, and
that the classes will recieve approximately equal representation within the batch. This may be useful for imbalanced
training data (when some classes have far fewer training samples than others). However, in practice it may be better
to upsample your training data for equal class representation.

model = cnn.PytorchModel ('resnetl8',classes)
model.sampler = 'imbalanced' #default is None

#...you can now train your model as normal
model.train (train_dataset, valid_dataset, epochs=0)

#once we run train(), we can see that the train loader is using an_,
—ImbalancedDatasetSampler

print ('sampler:"')

model.train_loader.sampler

created PytorchModel model object with 2 classes

Best Model Appears at Epoch 0 with F1 0.000.
sampler:

10.5. Sampling for imbalanced training data 93

[22]:

opensoundscape, Release 0.6.2

<opensoundscape.torch.sampling.ImbalancedDatasetSampler at 0x7fda3cbl9510>

10.6 Multi-target training with CnnResamplelLoss

Training multi-target models (a.k.a. multi-label: there can be any number of positive labels on each sample) is chal-
lenging and can benefit from using a modified loss function. OpenSoundscape provides a subclass of PytorchModel
called CnnResampleLoss, which implements a loss function designed for training multi-target models. We recommend
using this class rather than PytorchModel when training multi-target models. The use of the class is identical:

: model = cnn.CnnResamplelLoss ('resnetl8',classes)

#use as normal. ..
#model.train(...)
#model .predict (...)

created PytorchModel model object with 2 classes

10.7 Training and predicting with custom preprocessors

The preprocessing tutorial gives in-depth descriptions of how to customize your preprocessing pipeline.

Here, we’ll just give a quick example of tweaking the preprocessing pipeline: providing the CNN with a bandpassed
spectrogram object instead of the full frequency range.

It’s good practice to create the validation from the training dataset (after any modifications are made), so that they
perform the same preprocessing. You may or may not want to use augmentation on the validation dataset.

10.7.1 Bandpassed spectrograms

: model = cnn.PytorchModel ('resnetl8', classes)

turn on the bandpass action
train_dataset.actions.bandpass.on ()

specify the min and max frequencies for the bandpass action
train_dataset.actions.bandpass.set (min_£f=3000, max_f£f=5000)

create a validation dataset that matches the modified train_dataset

valid_dataset = train_dataset.sample (n=0)

valid_dataset.df = valid_df

#valid _dataset.augmentation_off () #uncomment to turn off augmentation on validation,,
—set

now we can train and validate on the bandpassed spectrograms

don't forget that you'll need to apply the same bandpass actions to
any datasets that you use for prediction as well
model.train(train_dataset, valid_dataset, epochs=0)

created PytorchModel model object with 2 classes

Best Model Appears at Epoch 0 with F1 0.000.

94 Chapter 10. Advanced CNN training

[277:

: model_ from_ saved

opensoundscape, Release 0.6.2

10.7.2 Matching preprocessing parameters during prediction

If we predict using this model later (even if we load it from a saved file), we can create a dataset with the correct
preprocessing parameters using model .train_dataset:

: model.save('./saved.model")

cnn.load_model ('./saved.model"')
prediction_preprocessor = model_from_ saved.train_dataset.sample (n=0)
#turn off augmentation for prediction
prediction_preprocessor.augmentation_off ()
prediction_preprocessor.df = valid_df

print ('Bandpassing parameters of prediction preprocessor:')

print (prediction_preprocessor.actions.bandpass.params)

Bandpassing parameters of prediction preprocessor:
{'min_f': 3000, 'max_f': 5000, 'out_of_bounds_ok': False}

10.7.3 clean up

remove files

import shutil
shutil.rmtree('./woodcock_labeled_data')

for p in Path('.') .glob('x.model') :
p-unlink ()

10.7. Training and predicting with custom preprocessors 95

opensoundscape, Release 0.6.2

96 Chapter 10. Advanced CNN training

cHAPTER 11

RIBBIT Pulse Rate model demonstration

RIBBIT (Repeat-Interval Based Bioacoustic Identification Tool) is a tool for detecting vocalizations that have a re-
peating structure.

This tool is useful for detecting vocalizations of frogs, toads, and other animals that produce vocalizations with a
periodic structure. In this notebook, we demonstrate how to select model parameters for the Great Plains Toad, then
run the model on data to detect vocalizations.

This work is described in:
* 2021 paper, “Automated detection of frog calls and choruses by pulse repetition rate”
* 2020 poster, “Automatic Detection of Pulsed Vocalizations”

RIBBIT is also available as an R package.

This notebook demonstrates how to use the RIBBIT tool implemented in opensoundscape as opensoundscape.
ribbit.ribbit ()

For help instaling OpenSoundscape, see the documentation

11.1 Import packages

suppress warnings
import warnings
warnings.simplefilter ('ignore')

#import packages

import numpy as np

from glob import glob

import pandas as pd

from matplotlib import pyplot as plt
import subprocess

#local imports from opensoundscape
(continues on next page)

97

https://doi.org/10.1111/cobi.13718
https://f1000research.com/posters/9-964
https://github.com/kitzeslab/r-ribbit
https://opensoundscape.org

opensoundscape, Release 0.6.2

(continued from previous page)
from opensoundscape.audio import Audio
from opensoundscape.spectrogram import Spectrogram
from opensoundscape.ribbit import ribbit

create big visuals
plt.rcParams|['figure.figsize']=[15, 8]
pd.set_option('display.precision', 2)

11.2 Download example audio

First, let’s download some example audio to work with.
You can run the cell below, OR visit this link to downlaod the data (whichever you find easier):
https://pitt.box.com/shared/static/Oxclmulc4gyOobewtzbzyfnsczwgrwe.zip

If you download using the link above, first un-zip the folder (double-click on mac or right-click -> extract all on
Windows). Then, move the great_plains_toad_dataset folder to the same location on your computer as this
notebook. Then you can skip this cell:

#download files from box.com to the current directory

subprocess.run(['curl', 'https://pitt.box.com/shared/static/
—9Imrxib85yljmflybbjvbrOtvl7liekvy.gz','-L', '-0o', 'great_plains_toad_dataset.tar.gz
—~']) # Download the data

subprocess.run(["tar","-xzf", "great_plains_toad_dataset.tar.gz"]) # Unzip the_
—downloaded tar.gz file

subprocess.run(["rm", "great_plains_toad_dataset.tar.gz"]) # Remove the file after_
—1ts contents are unzipped

CompletedProcess (args=['rm', 'great_plains_toad_dataset.tar.gz'], returncode=0)

now, you should have a folder in the same location as this notebook called great_plains_toad_dataset

if you had trouble accessing the data, you can try using your own audio files - just put them in a folder called
great_plains_toad_dataset in the same location as this notebook, and this notebook will load whatever
is in that folder

11.2.1 Load an audio file and create a spectrogram

audio_path = np.sort (glob('./great_plains_toad_dataset/*")) [0]

#load the audio file into an OpenSoundscape Audio object
audio = Audio.from_file (audio_path)

#trim the audio to the time from 0-3 seconds for a closer 1look
audio = audio.trim(0, 3)

#create a Spectrogram object
spectrogram = Spectrogram.from_audio (audio)

98 Chapter 11. RIBBIT Pulse Rate model demonstration

https://pitt.box.com/shared/static/0xclmulc4gy0obewtzbzyfnsczwgr9we.zip

opensoundscape, Release 0.6.2

11.2.2 Show the Great Plains Toad spectrogram as an image

A spectrogram is a visual representation of audio with frequency on the vertical axis, time on the horizontal axis, and
intensity represented by the color of the pixels

: spectrogram.plot ()

20000 A

17500

15000 4

=1
n
[=]
[=]

frequency (Hz)
=
(=]
=1
(=]

7500

5000 4

500 4

g-&.i#;ﬂ,ﬂ}.{.jg-uqﬁ u.--‘ TRy

i I O R e 0 P 1T T « =y U e b

05 140 15
time {sec)

11.3 Select model parameters

RIBBIT requires the user to select a set of parameters that describe the target vocalization. Here is some detailed
advice on how to use these parameters.

Signal Band: The signal band is the frequency range where RIBBIT looks for the target species. Based on the
spectrogram above, we can see that the Great Plains Toad vocalization has the strongest energy around 2000-2500 Hz,
so we will specify signal_band = [2000,2500]. Itis best to pick a narrow signal band if possible, so that the
model focuses on a specific part of the spectrogram and has less potential to include erronious sounds.

Noise Bands: Optionally, users can specify other frequency ranges called noise bands. Sounds in the noise_bands
are subtracted from the signal_band. Noise bands help the model filter out erronious sounds from the recordings,
which could include confusion species, background noise, and popping/clicking of the microphone due to rain, wind,
or digital errors. It’s usually good to include one noise band for very low frequencies — this specifically eliminates
popping and clicking from being registered as a vocalization. It’s also good to specify noise bands that target con-

fusion species. Another approach is to specify two narrow noise_bands that are directly above and below the
signal_band.

Pulse Rate Range: This parameters specifies the minimum and maximum pulse rate (the number of pulses per second,
also known as pulse repetition rate) RIBBIT should look for to find the focal species. Looking at the spectrogram
above, we can see that the pulse rate of this Great Plains Toad vocalization is about 15 pulses per second. By looking
at other vocalizations in different environmental conditions, we notice that the pulse rate can be as slow as 10 pulses
per second or as fast as 20. So, we choose pulse_rate_range = [10, 20] meaning that RIBBIT should look
for pulses no slower than 10 pulses per second and no faster than 20 pulses per second.

11.3. Select model parameters 99

opensoundscape, Release 0.6.2

Clip Duration: This parameter tells the algorithm how many seconds of audio to analyze at one time. Generally,
you should choose a c1ip_duration thatis ~2x longer than the target species vocalization, or a little bit longer.
For very slowly pulsing vocalizations, choose a longer window so that at least 5 pulses can occur in one window (0.5
pulses per second -> 10 second window). Typical values for c1ip_duration are 0.3 to 10 seconds. Here, because
the The Great Plains Toad has a vocalization that continues on for many seconds (or minutes!), we chose a 2-second
window which will include plenty of pulses.

* we can also set clip_overlap if we want overlapping clips. For instance, a clip_duration of 2 with
clip_overlap of 1 results in 50% overlap of each consecutive clip. This can help avoid sounds being split
up across two clips, and therefore not being detected.

e final_clip determines what should be done when there is less than c1ip_duration audio remaining at
the end of an audio file. We’ll just use final_clip=None to discard any remaining audio that doesn’t make
a complete clip.

Plot: We can choose to show the power spectrum of pulse repetition rate for each window by setting plot=True.
The default is not to show these plots (plot=False).

minimum and maximum rate of pulsing (pulses per second) to search for
pulse_rate_range = [8,15]

look for a vocalization in the range of 1000-2000 Hz
signal_band = [1800,2400]

subtract the amplitude signal from these frequency ranges
noise_bands = [[0,1000], [3000,3200] 1

#divides the signal into segments this many seconds long, analyzes each independently
clip_duration = 2 #seconds
clip_overlap = 0 #seconds

#if True, it will show the power spectrum plot for each audio segment
show_plots = True

11.4 Search for pulsing vocalizations with ribbit ()

This function takes the parameters we chose above as arguments, performs the analysis, and returns two arrays: -
scores: the pulse rate score for each window - times: the start time in seconds of each window

The scores output by the function may be very low or very high. They do not represent a “confidence” or “probability”
from O to 1. Instead, the relative values of scores on a set of files should be considered: when RIBBIT detects the
target species, the scores will be significantly higher than when the species is not detected.

The file gpt 0 . wav has a Great Plains Toad vocalizing only at the beginning. Let’s analyze the file with RIBBIT and
look at the scores versus time.

#get the audio file path
audio_path = np.sort(glob('./great_plains_toad_dataset/*")) [0]

#make the spectrogram
spec = Spectrogram.from_audio(audio.from_file (audio_path))

#run RIBBIT

score_df = ribbit(
spec,
pulse_rate_range=pulse_rate_range,

(continues on next page)

100 Chapter 11. RIBBIT Pulse Rate model demonstration

[6]:

opensoundscape, Release 0.6.2

(continued from previous page)

signal_band=signal_band,
clip_duration=clip_duration,
noise_bands=noise_bands,
plot=False

#show the spectrogram
print ('spectrogram of 10 second file with Great Plains Toad at the beginning')
spec.plot ()

plot the score vs time of each window

plt.scatter (score_df['start_time'],score_df['score'])

plt.xlabel ('window start time (sec)')

plt.ylabel ('RIBBIT score')

plt.title ('RIBBIT scores for 10 second file with Great Plains Toad at the beginning')

spectrogram of 10 second file with Great Plains Toad at the beginning

20000 4

17500 A

15000 4

=i
wn
=
[=]
L

frequency (Hz)
5]
(=)
=1
=

7500 4

5000 4

time {sec)

Text (0.5, 1.0, 'RIBBIT scores for 10 second file with Great Plains Toad at the_
—beginning')

11.4. Search for pulsing vocalizations with ribbit () 101

opensoundscape, Release 0.6.2

RIBBIT scores for 10 secend file with Great Plains Toad at the beginning

0,010

0,008

0.006

RIBBIT score

0.004 {

0.002

0,000 4 L] L] L]

0 1 2 3 4 5 6 7 8
window start time (sec)

as we hoped, RIBBIT outputs a high score during the vocalization (the window from 0-2 seconds) and a low score
when the frog is not vocalizing

11.5 Analyzing a set of files

set up a dataframe for storing files' scores and labels
df = pd.DataFrame (index = glob('./great_plains_toad_dataset/*'),columns=["'score',
—'label'])

label is 1 if the file contains a Great Plains Toad vocalization, and 0 if it does,
—not
df['label'] = [1 if 'gpt' in f else 0 for f in df.index]

calculate RIBBIT scores
for path in df.index:

#make the spectrogram
spec = Spectrogram.from_audio (audio.from_file (path))

#run RIBBIT

score_df = ribbit (
spec,
pulse_rate_range=[8,20],
signal_band=[1900,2400],
clip_duration=clip_duration,
noise_bands=[[0,1500], [2500,3500]],
plot=False)

use the maximum RIBBIT score from any window as the score for this file
multiply the score by 10,000 to make it easier to read

(continues on next page)

102 Chapter 11. RIBBIT Pulse Rate model demonstration

opensoundscape, Release 0.6.2

(continued from previous page)

df.at [path, 'score'] = max(score_df['score']) x 10000
print ("Files sorted by score, from highest to lowest:")
df.sort_values (by='score', ascending=False)

Files sorted by score, from highest to lowest:

score label

./great_plains_toad_dataset/gpt0.mp3 1.1le+02 1
./great_plains_toad_dataset/gpt3.mp3 29 1
./great_plains_toad_dataset/gpt2.mp3 17 1
./great_plains_toad_dataset/gptl.mp3 10 1
./great_plains_toad_dataset/negative9.mp3 3 0
./great_plains_toad_dataset/negative8.mp3 0.89 0
./great_plains_toad_dataset/negatived4.mp3 0.76 0
./great_plains_toad_dataset/negative2.mp3 0.65 0
./great_plains_toad_dataset/negativel.mp3 0.3 0
./great_plains_toad_dataset/negative3.mp3 0.3 0
./great_plains_toad_dataset/gpt4.mp3 0.12 1
./great_plains_toad_dataset/negative6.mp3 0.057 0
./great_plains_toad_dataset/pops2.mp3 0.0011 0
./great_plains_toad_dataset/popsl.mp3 0.001 0
./great_plains_toad_dataset/negative5.mp3 4.3e-05 0
./great_plains_toad_dataset/negative?7.mp3 0 0
./great_plains_toad_dataset/water.mp3 0 0
./great_plains_toad_dataset/silent.mp3 0 0

So, how good is RIBBIT at finding the Great Plains Toad?

We can see that the scores for all of the files with Great Plains Toad (gpt) score above 10 except gpt 4 .mp3 (which
contains only a very quiet and distant vocalization). All files that do not contain the Great Plains Toad score less than
3.5. So, RIBBIT is doing a good job separating Great Plains Toads vocalizations from other sounds!

Notably, noisy files like pops1.mp3 score low even though they have lots of periodic energy - our noise_bands
sucessfully rejected these files. Without using noise_bands, files like these would receive very high scores. Also,
some birds in “negatives” files that have periodic calls around the same pulsre rate as the Great Plains Toad received
low scores. This is also a result of choosing a tight signal_band and strategic noise_bands. You can try
adjusting or eliminating these bands to see their effect on the audio.

(HINT: elimintating the noise_bands will result in high scores for the “pops” files)

11.6 Run RIBBIT on multiple species simultaneously

If you want to search for multiple species, its best to combine the analysis into one function - that way you only have
to load each audio file (and make it’s spectrogram) one time, instead of once for each species. (If you have thousands
of audio files, this might be a big time saver.)

This code gives a quick exmaple of how you could use a pre-made dataframe (could load it in from a spreadsheet, for
instance) of parameters for a set of species to run RIBBIT on all of them.

Note that this example assumes you are using the same spectrogram settings for each species - this might not be
the case in practice, if some species require high time-resolution spectrograms and others require high frequency-
resolution spectrograms.

#we'll create a dataframe here, but you could also load it from a spreadsheet
species_df = pd.DataFrame (columns=['pulse_rate_range', 'signal_band', 'clip_duration',

—'noise_bands']) .
(continues on next page)

11.6. Run RIBBIT on multiple species simultaneously 103

opensoundscape, Release 0.6.2

(continued from previous page)

species_df.loc['great_plains_toad']={

'pulse_rate_range':[8,20],
'signal_band':[1900,2400],
'clip_duration':2.0,

'noise_bands':[[0,1500], [2500,3500]1]

species_df.loc['bird_series']={
'pulse_rate_range':[8,11],
'signal_band':[5000, 6500],
'clip_duration':2.0,
'noise_bands':[[0,4000]]

species_df

pulse_rate_range
great_plains_toad [8, 20]
bird_series [8, 111

signal_band clip_duration \
[1900, 2400] 2.0
[5000, 6500] 2.0

noise_bands
great_plains_toad [[0, 1500], [2500, 3500]]
bird_series [[0, 4000]]

now let’s analyze each audio file for each species.

We’ll save the results in a table that has a column for each species.

set up a dataframe for storing files' scores and labels
df = pd.DataFrame (index = glob('./great_plains_toad_dataset/«+'),columns=species_df.

—index.values)

calculate RIBBIT scores
for path in df.index:

for species, species_params in species_df.iterrows():
#use RIBBIT for each species in species_df

#make the spectrogram

spec = Spectrogram.from_audio (audio.from_file (path))

#run RIBBIT
score_df = ribbit(
spec,

pulse_rate_range=species_params|['pulse_rate_range'],
signal_band=species_params|['signal band'],
clip_duration=species_params|['clip_duration'],
noise_bands=species_params|'noise_bands'],
plot=False)

use the maximum RIBBIT score from any window as the score for this file
multiply the score by 10,000 to make it easier to read
df.at [path, species] = max(score_df['score']) » 10000

print ("Files with scores for each species, sorted by 'bird series' score:")
df.sort_values (by="'bird_series', ascending=False)

104

Chapter 11. RIBBIT Pulse Rate model demonstration

[10]:

opensoundscape, Release 0.6.2

Files with scores for each species, sorted by

./great_plains_toad_dataset/negative5
./great_plains_toad_dataset/negativel
./great_plains_toad_dataset/negative3
./great_plains_toad_dataset/negative?
./great_plains_toad_dataset/negative9
./great_plains_toad_dataset/negative?
./great_plains_toad_dataset/negativeb
./great_plains_toad_dataset/pops2.mp3
./great_plains_toad_dataset/negatives
./great_plains_toad_dataset/negatived
./great_plains_toad_dataset/water.mp3
./great_plains_toad_dataset/popsl.mp3

./great_plains_toad_dataset/silent.mp3

./great_plains_toad_dataset/gpt4.mp3
./great_plains_toad_dataset/gpt2.mp3
./great_plains_toad_dataset/gpt3.mp3
./great_plains_toad_dataset/gpt0.mp3
./great_plains_toad_dataset/gptl.mp3

.mp3
.mp3
.mp3
.mp3
.mp3
.mp3
.mp3

.mp3
.mp3

'bird_series' score:

great_plains_toad bird_series

4.3e-05 94
0.3 73

0.3 5

0 2.9

3 0.089

0.65 0.016
0.057 0.014
0.0011 0.0098
0.89 0.0017
0.76 0.0014

0 0.0011

0.001 0.0005

0 0.00037

0.12 7.2e-05

17 0

29 0
1.le+02 0
10 0

looking at the highest scoring file for ‘bird_series’, it has the trilled bird sound at 5-6.5 kHz

Spectrogram. from_audio (audio.from_file ('

./great_plains_

toad_dataset/negative5.mp3"')) .

h J]Imm]““'ll | (Rl !j.
T o
o !HwhMMMmmnmwmnsﬁ-.'.‘n:w‘m

11.6.1 Warning

i

time {sec)

when loading a dataframe from a file, lists of numbers like [8,20] might be read in as strings (“[8,20]”) rather than a
list of numbers. Here’s a handy little piece of code that will load the values in the desired format

11.6. Run RIBBIT on multiple species simultaneously

105

[117]:

[11]:

[12]:

opensoundscape, Release 0.6.2

#let's say we have the species df saved as a csv file
species_df.index.name="species'
species_df.to_csv('species_df.csv')

#define the conversion parameters for each column
import ast
generic = lambda x: ast.literal_eval (x)
conv = {
'pulse_rate_range':generic,
'signal_band':generic,
'noise_bands':generic
}
#tell pandas to use them when loading the csv
species_df=pd.read_csv ('./species_df.csv',converters=conv) .set_index ('species')

#now the species_df has numeric values instead of strings
species_df

pulse_rate_range signal_band clip_duration \

species
great_plains_toad [8, 20] [1900, 2400] 2.0
bird_series [8, 111] [5000, 6500] 2.0

noise_bands
species
great_plains_toad [[0, 1500], [2500, 3500]]
bird_series [[0, 4000711

11.7 Detail view of RIBBIT method

Now, let’s look at one 10 second file and tell ribbit to plot the power spectral density for each window (plot=True).
This way, we can see if peaks are emerging at the expected pulse rates. Since our window_length is 2 seconds,
each of these plots represents 2 seconds of audio. The vertical lines on the power spectral density represent the lower
and upper pulse_rate_range limits.

In the file gpt 0 . mp 3, the Great Plains Toad vocalizes for a couple seconds at the beginning, then stops. We expect to
see a peak in the power spectral density at 15 pulses/sec in the first 2 second window, and maybe a bit in the second,
but not later in the audio.

#create a spectrogram from the file, like above:

1. get audio file path

audio_path = np.sort (glob('./great_plains_toad_dataset/x')) [0]
2. make audio object and trim (this time 0-10 seconds)

audio = Audio.from_file (audio_path) .trim(0,10)

3. make spectrogram

spectrogram = Spectrogram.from_audio (audio)

clip_df = ribbit (
spectrogram,
pulse_rate_range=pulse_rate_range,
signal_band=signal_band,
clip_duration=clip_duration,
noise_bands=noise_bands,
plot=show_plots)

106 Chapter 11. RIBBIT Pulse Rate model demonstration

opensoundscape, Release 0.6.2

window: 0.0 to 2.0 sec

RIBBIT: power spectral density

0,010 4

0,008

0:006

power spectral density

0.004

0002

0.000 A J«.»—-._./‘\-/J —J\——»—-J\M-Mf\—

] 20 40 &0 80
pulse rate (pulsesjsec)

window: 2.0 to 4.0 sec

RIBBIT: power spectral density

0.012

0010

=
[=]
=]
=]

0006

power spectral density

0.004 {

0,002

0,000 4 I

o 20 40 B0 B0
pulse rate (pulses/sec)

window: 4.0 to 6.0 sec

11.7. Detail view of RIBBIT method 107

opensoundscape, Release 0.6.2

1e—6 RIBBIT: power spectral density

124

10 A

;; W/\ Mm

L
=5
L

=
m
L

power spectral density

=
=

0.0 4

0 &0
pulse rate (pulsesfsec)

=

window: 6.0 to 8.0 sec

1e—6 RIEBIT: power spectral density

h

=
un

power spectral density

=
=]

0.5 A

0.0 A

20 40 60 80
pulse rate {pulsesfsec)

11.8 Time to experiment for yourself

Now that you know the basics of how to use RIBBIT, you can try using it on your own data. We recommend spending
some time looking at different recordings of your focal species before choosing parameters. Experiment with the noise
bands and window length, and get in touch if you have questions!

108 Chapter 11. RIBBIT Pulse Rate model demonstration

opensoundscape, Release 0.6.2

Sam’s email: sam . lapp [at] pitt.edu

this cell will delete the folder great_plains_toad_dataset. Only run it if you wish delete that folder and the
example audio inside it.

: from pathlib import Path

import shutil
shutil.rmtree ('./great_plains_toad_dataset/")
Path('./species_df.csv') .unlink ()

11.8. Time to experiment for yourself 109

opensoundscape, Release 0.6.2

110 Chapter 11. RIBBIT Pulse Rate model demonstration

cHAPTER 12

Audio and Spectrograms

12.1 Annotations

functions and classes for manipulating annotations of audio
includes BoxedAnnotations class and utilities to combine or “diff”” annotations, etc.

class opensoundscape.annotations.BoxedAnnotations (df, audio_file=None)
container for “boxed” (frequency-time) annotations of audio

(for instance, annotations created in Raven software) includes functionality to load annotations from Raven
txt files, output one-hot labels for specific clip lengths or clip start/end times, apply corrections/conversions to
annotations, and more.

Contains some analogous functions to Audio and Spectrogram, such as trim() [limit time range] and bandpass()
[limit frequency range]

bandpass (low_f, high_f, edge_mode="trim’)
Bandpass a set of annotations, analogous to Spectrogram.bandpass()

Out-of-place operation: does not modity itself, returns new object
Parameters
e low_f£f — low frequency (Hz) bound
* high_ £ — high frequench (Hz) bound

* edge_mode — what to do when boxes overlap with edges of trim region - ‘trim’: trim
boxes to bounds - ‘keep’: allow boxes to extend beyond bounds - ‘remove’: completely
remove boxes that extend beyond bounds

Returns a copy of the BoxedAnnotations object on the bandpassed region

convert_labels (conversion_table)
modify annotations according to a conversion table

Changes the values of ‘annotation’ column of dataframe. Any labels that do not have specified conversions
are left unchanged.

111

opensoundscape, Release 0.6.2

Returns a new BoxedAnnotations object, does not modify itself (out-of-place operation). So use could
look like: my_annotations = my_annotations.convert_labels(table)

Parameters conversion_table - current values -> new values. can be either -
pd.DataFrame with 2 columns [current value, new values] or - dictionary {current values:
new values}

Returns new BoxedAnnotations object with converted annotation labels

classmethod from raven_file (path, annotation_column, keep_extra_columns=True, au-
dio_file=None)
load annotations from Raven txt file

Parameters
* path — location of raven .txt file, str or pathlib.Path
* annotation_column — (str) column containing annotations

* keep_extra_ columns — keep or discard extra Raven file columns (always keeps
start_time, end_time, low_{f, high_f, annotation audio_file). [default: True] - True: keep
all - False: keep none - or iterable of specific columns to keep

* audio_file - optionally specify the name or path of a corresponding audio file.
Returns BoxedAnnotations object containing annotaitons from the Raven file

global_one_hot_1labels (classes)
get a dictionary of one-hot labels for entire duration :param classes: iterable of class names to give 0/1
labels

Returns list of 0/1 labels for each class

one_hot_clip_labels (full_duration, clip_duration, clip_overlap, classes, min_label_overlap,
min_label_fraction=1, final_clip=None)
Generate one-hot labels for clips of fixed duration

wraps helpers.generate_clip_times_df() with self.one_hot_labels_like() - Clips are created in the same way
as Audio.split() - Labels are applied based on overlap, using self.one_hot_labels_like()

Parameters
e full duration - The amount of time (seconds) to split into clips
* clip_duration (float)— The duration in seconds of the clips
* clip_overlap (float)— The overlap of the clips in seconds [default: 0]

* classes - list of classes for one-hot labels. If None, classes will be all unique values of
self.df[‘annotation’]

* min_label_ overlap — minimum duration (seconds) of annotation within the time
interval for it to count as a label. Note that any annotation of length less than this value
will be discarded. We recommend a value of 0.25 for typical bird songs, or shorter values
for very short-duration events such as chip calls or nocturnal flight calls.

e min_label_fraction — [default: None] if >= this fraction of an annotation overlaps
with the time window, it counts as a label regardless of its duration. Note that if either of
the two criterea (overlap and fraction) is met, the label is 1. if None (default), this criterion
is not used (i.e., only min_label_overlap is used). A value of 0.5 for ths parameter would
ensure that all annotations result in at least one clip being labeled 1 (if there are no gaps
between clips).

112 Chapter 12. Audio and Spectrograms

opensoundscape, Release 0.6.2

final_clip (str)— Behavior if final_clip is less than clip_duration seconds long. By
default, discards remaining time if less than clip_duration seconds long [default: None].
Options:

— None: Discard the remainder (do not make a clip)
— 7extend”: Extend the final clip beyond full_duration to reach clip_duration length

— “remainder”: Use only remainder of full_duration (final clip will be shorter than
clip_duration)

— ”full”: Increase overlap with previous clip to yield a clip with clip_duration length

Returns dataframe with index [‘start_time’,’end_time’] and columns=classes

one_hot_labels_1like (clip_df, classes, min_label_overlap, min_label_fraction=None,

keep_index=False)

create a dataframe of one-hot clip labels based on given starts/ends

Uses start and end clip times from clip_df to define a set of clips. Then extracts annotatations associated
overlapping with each clip. Required overlap parameters are selected by user: annotation must satisfy the
minimum time overlap OR minimum % overlap to be included (doesn’t require both conditions to be met,

only one)

clip_df can be created using opensoundscap.helpers.generate_clip_times_df

Parameters

clip_df — dataframe with ‘start_time’ and ‘end_time’ columns specifying the temporal
bounds of each clip

min_label_overlap — minimum duration (seconds) of annotation within the time
interval for it to count as a label. Note that any annotation of length less than this value
will be discarded. We recommend a value of 0.25 for typical bird songs, or shorter values
for very short-duration events such as chip calls or nocturnal flight calls.

min_label_ fraction - [default: None] if >= this fraction of an annotation overlaps
with the time window, it counts as a label regardless of its duration. Note that if either of
the two criterea (overlap and fraction) is met, the label is 1. if None (default), this criterion
is not used (i.e., only min_label_overlap is used). A value of 0.5 for ths parameter would
ensure that all annotations result in at least one clip being labeled 1 (if there are no gaps
between clips).

classes - list of classes for one-hot labels. If None, classes will be all unique values of
self.df ‘annotation’]

keep_index —if True, keeps the index of clip_df as an index in the returned DataFrame.
[default:False]

Returns DataFrame of one-hot labels (multi-index of (start_time, end_time), columns for each
class, values O=absent or 1=present)

subset (classes)
subset annotations to those from a list of classes

out-of-place operation (returns new filtered BoxedAnnotations object)

Parameters

classes - list of classes to retain (all others are discarded)

the list can include np.nan or None if you want to keep
them (-) -

Returns new BoxedAnnotations object containing only annotations in classes

12.1.

Annotations

113

opensoundscape, Release 0.6.2

to_raven_file (path)
save annotations to a Raven-compatible tab-separated text file

Parameters path — path for saved test file (extension must be “.tsv”) - can be str or pathlib.Path
Outcomes: creates a file containing the annotations in a format compatible with Raven Pro/Lite.
Note: Raven Lite does not support additional columns beyond a single annotation column. Additional

columns will not be shown in the Raven Lite interface.

trim (start_time, end_time, edge_mode="trim’)
Trim a set of annotations, analogous to Audio/Spectrogram.trim()

Out-of-place operation: does not modify itself, returns new object
Parameters
* start_time —time (seconds) since beginning for left bound
* end_time — time (seconds) since beginning for right bound

* edge_mode — what to do when boxes overlap with edges of trim region - ‘trim’: trim
boxes to bounds - ‘keep’: allow boxes to extend beyond bounds - ‘remove’: completely
remove boxes that extend beyond bounds

Returns a copy of the BoxedAnnotations object on the trimmed region. - note that, like Au-
dio.trim(), there is a new reference point for 0.0 seconds (located at start_time in the original
object)

unique_labels ()
get list of all unique (non-Falsy) labels

opensoundscape.annotations.categorical_to_one_hot (labels, classes=None)
transform multi-target categorical labels (list of lists) to one-hot array

Parameters
* labels — list of lists of categorical labels, eg [[‘white’,’red’],[‘green’, white’]] or
[[0,1,2],[3]]
* classes=None — list of classes for one-hot labels. if None, taken to be the unique set of

values in labels

Returns 2d array with O for absent and 1 for present classes: list of classes corresponding to columns
in the array

Return type one_hot

opensoundscape.annotations.combine (list_of _annotation_objects)
combine annotations with user-specified preferences Not Implemented.

opensoundscape.annotations.diff (base_annotations, comparison_annotations)
look at differences between two BoxedAnnotations objects Not Implemented.

Compare different labels of the same boxes (Assumes that a second annotator used the same boxes as the first,
but applied new labels to the boxes)

opensoundscape.annotations.one_hot_labels_on_time_interval (df, classes,
start_time, end_time,
min_label_overlap,

min_label_fraction=None)
generate a dictionary of one-hot labels for given time-interval

114 Chapter 12. Audio and Spectrograms

opensoundscape, Release 0.6.2

Each class is labeled 1 if any annotation overlaps sufficiently with the time interval. Otherwise the class is
labeled 0.

Parameters
e df — DataFrame with columns ‘start_time’, ‘end_time’ and ‘annotation’

* classes - list of classes for one-hot labels. If None, classes will be all unique values of
self.df[‘annotation’]

* start_time - beginning of time interval (seconds)
¢ end_time - end of time interval (seconds)

* min_label_overlap — minimum duration (seconds) of annotation within the time in-
terval for it to count as a label. Note that any annotation of length less than this value will be
discarded. We recommend a value of 0.25 for typical bird songs, or shorter values for very
short-duration events such as chip calls or nocturnal flight calls.

* min_label_ fraction — [default: None] if >= this fraction of an annotation overlaps
with the time window, it counts as a label regardless of its duration. Note that if either of the
two criterea (overlap and fraction) is met, the label is 1. if None (default), the criterion is
not used (only min_label_overlap is used). A value of 0.5 would ensure that all annotations
result in at least one clip being labeled 1 (if no gaps between clips).

Returns label 0/1} for all classes
Return type dictionary of {class

opensoundscape.annotations.one_hot_to_categorical (one_hot, classes)
transform one_hot labels to multi-target categorical (list of lists)

Parameters

* one_hot - 2d array with O for absent and 1 for present

* classes - list of classes corresponding to columns in the array
Returns

list of lists of categorical labels for each sample, eg [[‘white’,’red’],[‘green’, white’]] or
([0,1,2],[3]]

Return type labels

12.2 Audio

audio.py: Utilities for loading and modifying Audio objects
Note: Out-of-place operations

Functions that modify Audio (and Spectrogram) objects are “out of place”, meaning that they return a new Audio object
instead of modifying the original object. This means that running a line ° audio_object.resample (22050)
WRONG! ° will not change the sample rate of audio_object! If your goal was to overwrite audio_object with the
new, resampled audio, you would instead write © audio_object = audio_object.resample (22050)

class opensoundscape.audio.Audio (samples, sample_rate, resample_type="kaiser_fast’,

. _ max_duration=None, metadata=None)
Container for audio samples

Initialization requires sample array. To load audio file, use Audio.from_file()

12.2. Audio 115

opensoundscape, Release 0.6.2

Initializing an Audio object directly requires the specification of the sample rate. Use Audio.from_file or Au-
dio.from_bytesio with sample_rate=None to use a native sampling rate.

Parameters
* samples (np.array)— The audio samples
* sample_rate (integer)— The sampling rate for the audio samples
* resample_type (str)— The resampling method to use [default: “kaiser_fast”]

* max_duration (None or integer) — The maximum duration in seconds allowed
for the audio file (longer files will raise an exception)[default: None] If None, no limit is
enforced

Returns An initialized Audio object

bandpass (low_f, high_f, order)
Bandpass audio signal with a butterworth filter

Uses a phase-preserving algorithm (scipy.signal’s butter and solfiltfilt)
Parameters
* low_f —low frequency cutoff (-3 dB) in Hz of bandpass filter
* high_f — high frequency cutoff (-3 dB) in Hz of bandpass filter
* order — butterworth filter order (integer) ~= steepness of cutoff

duration ()
Return duration of Audio

Returns The duration of the Audio
Return type duration (float)

extend (length)
Extend audio file by adding silence to the end

Parameters length - the final duration in seconds of the extended audio object
Returns a new Audio object of the desired duration

classmethod from bytesio (bytesio, sample_rate=None, max_duration=None, resam-
ple_type="kaiser_fast’)
Read from bytesio object

Read an Audio object from a BytesIO object. This is primarily used for passing Audio over HTTP.
Parameters
* bytesio — Contents of WAV file as ByteslO
* sample_rate — The final sampling rate of Audio object [default: None]
¢ max_duration — The maximum duration of the audio file [default: None]
* resample_type — The librosa method to do resampling [default: “kaiser_fast™]
Returns An initialized Audio object

classmethod from file (path, sample_rate=None, resample_type="kaiser_fast’,

max_duration=None, metadata=True, offset=0, duration=None)
Load audio from files

Deal with the various possible input types to load an audio file Also attempts to load metadata using
tinytag.

116 Chapter 12. Audio and Spectrograms

opensoundscape, Release 0.6.2

Audio objects only support mono (one-channel) at this time. Files with multiple channels are mixed down
to a single channel.

Optionally, load only a piece of a file using offset and duration. This will efficiently read sections of a .wav
file regardless of where the desired clip is in the audio. For mp3 files, access time grows linearly with time
since the beginning of the file.

This function relies on librosa.load(), which supports wav natively but requires ffmpeg for mp3 support.

Parameters

path (str, Path)— path to an audio file

sample_rate (int, None)-resample audio with value and resample_type, if None
use source sample_rate (default: None)

resample_type — method used to resample_type (default: kaiser_fast)

max_duration — the maximum length of an input file, None is no maximum (default:
None)

metadata (bool) — if True, attempts to load metadata from the audio file. If an excep-
tion occurs, self.metadata will be None. Otherwise self.metadata is a dictionary. Note:
will also attempt to parse AudioMoth metadata from the comment field, if the artist field
includes AudioMoth. The parsing function for AudioMoth is likely to break when new
firmware versions change the comment metadata field.

offset — load audio starting at this time (seconds) after the start of the file. Default: 0
seconds.

duration - load audio of this duration (seconds) starting at offset. If None, loads all the
way to the end of the file.

Returns samples, sample_rate, resample_type, max_duration, metadata (dict or None)

Return type Audio object with attributes

Note: default sample_rate=None means use file’s sample rate, don’t resample

loop (length=None, n=None)
Extend audio file by looping it

Parameters

length — the final length in seconds of the looped file (cannot be used with n)[default:
None]

n — the number of occurences of the original audio sample (cannot be used with length)
[default: None] For example, n=1 returns the original sample, and n=2 returns two con-
catenated copies of the original sample

Returns a new Audio object of the desired length or repetitions

resample (sample_rate, resample_type=None)
Resample Audio object

Parameters

sample_rate (scalar)—the new sample rate

resample_type (str) — resampling algorithm to use [default: None (uses
self.resample_type of instance)]

Returns a new Audio object of the desired sample rate

12.2. Audio

117

opensoundscape, Release 0.6.2

save (path)
Save Audio to file

NOTE: currently, only saving to .wav format supported
Parameters path — destination for output

spectrum ()
Create frequency spectrum from an Audio object using fft

Parameters self —
Returns fft, frequencies

split (clip_duration, clip_overlap=0, final_clip=None)
Split Audio into even-lengthed clips

The Audio object is split into clips of a specified duration and overlap
Parameters
* clip_duration (float)— The duration in seconds of the clips
* clip_overlap (float) - The overlap of the clips in seconds [default: 0]

e final clip (str)— Behavior if final_clip is less than clip_duration seconds long. By
default, discards remaining audio if less than clip_duration seconds long [default: None].
Options:

— None: Discard the remainder (do not make a clip)

“extend”: Extend the final clip with silence to reach clip_duration length

“remainder”’: Use only remainder of Audio (final clip will be shorter than clip_duration)

— 7full”: Increase overlap with previous clip to yield a clip with clip_duration length
Returns list of audio objects - dataframe w/columns for start_time and end_time of each clip
Return type

* audio_clips

split_and_save (destination, prefix, clip_duration, clip_overlap=0, final_clip=None,

dry_run=False)
Split audio into clips and save them to a folder

Parameters
* destination — A folder to write clips to
* prefix — A name to prepend to the written clips
* clip_duration — The duration of each clip in seconds
* clip_overlap — The overlap of each clip in seconds [default: O]

e final_ clip (str) — Behavior if final_clip is less than clip_duration seconds long.
[default: None] By default, ignores final clip entirely. Possible options (any other input
will ignore the final clip entirely),

“remainder”: Include the remainder of the Audio (clip will not have clip_duration
length)

— full”: Increase the overlap to yield a clip with clip_duration length

“extend”: Similar to remainder but extend (repeat) the clip to reach clip_duration length

None: Discard the remainder

118 Chapter 12. Audio and Spectrograms

opensoundscape, Release 0.6.2

e dry_run (bool) — If True, skip writing audio and just return clip DataFrame [default:
False]

Returns pandas.DataFrame containing paths and start and end times for each clip

time_to_sample (time)
Given a time, convert it to the corresponding sample

Parameters time — The time to multiply with the sample_rate
Returns The rounded sample
Return type sample

trim (start_time, end_time)
Trim Audio object in time

If start_time is less than zero, output starts from time O If end_time is beyond the end of the sample, trims
to end of sample

Parameters
* start_time - time in seconds for start of extracted clip
* end_time - time in seconds for end of extracted clip
Returns a new Audio object containing samples from start_time to end_time

exception opensoundscape.audio.OpsoLoadAudioInputError
Custom exception indicating we can’t load input

exception opensoundscape.audio.OpsoLoadAudioInputTooLong
Custom exception indicating length of audio is too long

12.3 AudioMoth

Utilities specifically for audio files recoreded by AudioMoths

opensoundscape.audiomoth.audiomoth_start_time (file, filename_timezone="UTC"’,

to_utc=False)
parse audiomoth file name into a time stamp

AudioMoths create their file name based on the time that recording starts. This function parses the name into
a timestamp. Older AudioMoth firmwares used a hexidecimal unix time format, while newer firmwares use a
human-readable naming convention. This function handles both conventions.

Parameters
* file — (str) path or file name from AudioMoth recording

* filename_timezone - (str) name of a pytz time zone (for options see
pytz.all_timezones). This is the time zone that the AudioMoth uses to record its name,
not the time zone local to the recording site. Usually, this is ‘UTC’ because the AudioMoth
records file names in UTC.

* to_utc —if True, converts timestamps to UTC localized time stamp. Otherwise, will return
timestamp localized to timezone argument [default: False]

Returns localized datetime object - if to_utc=True, datetime is always “localized” to UTC

opensoundscape.audiomoth.parse_audiomoth_metadata (metadata)
parse a dictionary of AudioMoth .wav file metadata

12.3. AudioMoth 119

opensoundscape, Release 0.6.2

-parses the comment field -adds keys for gain_setting, battery_state, recording_start_time -if available (firmware
>=1.4.0), addes temperature

Notes on comment field: - Starting with Firmware 1.4.0, the audiomoth logs Temperature to the
metadata (wav header) eg “and temperature was 11.2C.”

* At some point the firmware shifted from writing “gain setting 2” to “medium gain setting”. Should handle
both modes.

Tested for AudioMoth firmware versions: 1.5.0

Parameters metadata — dictionary with audiomoth metadata

Returns metadata dictionary with added keys and values

12.4 Audio Tools

audio_tools.py: set of tools that filter or modify audio files or sample arrays (not Audio objects)

opensoundscape.audio_tools.bandpass_filter (signal, low_f, high_f, sample_rate,

order=9)
perform a butterworth bandpass filter on a discrete time signal using scipy.signal’s butter and solfilt-

filt (phase-preserving version of sosfilt)

Parameters
e signal — discrete time signal (audio samples, list of float)
* low_f£ —-3db point (?) for highpass filter (Hz)
* high_ £ —-3db point (?) for highpass filter (Hz)
* sample_rate — samples per second (Hz)
* order=9 - higher values -> steeper dropoff

Returns filtered time signal

opensoundscape.audio_tools.butter_bandpass (low_f, high_f, sample_rate, or-

der=9)
generate coefficients for bandpass_filter()

Parameters
* low_f£ — low frequency of butterworth bandpass filter
* high_f — high frequency of butterworth bandpass filter
* sample_rate — audio sample rate
* order=9 — order of butterworth filter
Returns set of coefficients used in sosfiltfilt()

opensoundscape.audio_tools.clipping detector (samples, threshold=0.6)
count the number of samples above a threshold value

Parameters
* samples — atime series of float values

* threshold=0. 6 — minimum value of sample to count as clipping

120 Chapter 12. Audio and Spectrograms

opensoundscape, Release 0.6.2

Returns number of samples exceeding threshold

opensoundscape.audio_tools.convolve_file (in_file, out_file, ir_file, in-
put_gain=1.0)
apply an impulse_response to a file using ffmpeg’s afir convolution

ir_file is an audio file containing a short burst of noise recorded in a space whose acoustics are to be
recreated

this makes the files ‘sound as if” it were recorded in the location that the impulse response (ir_file)
was recorded

Parameters

e in_file - path to an audio file to process

* out_file - path to save output to

e ir file - path to impulse response file

e input_gain=1.0 —ratio for in_file sound’s amplitude in (0,1)
Returns os response of ffmpeg command

opensoundscape.audio_tools.mixdown_with_ delays (files_to_mix, destination,
delays=None, levels=None,
duration="first’, verbose=0,

create_txt_file=False)
use ffmpeg to mixdown a set of audio files, each starting at a specified time (padding beginnings

with zeros)
Parameters
e files_to_mix - list of audio file paths
* destination - path to save mixdown to

* delays=None - list of delays (how many seconds of zero-padding to add at be-
ginning of each file)

* levels=None — optionally provide a list of relative levels (amplitudes) for each
input

* duration='first' — ffmpeg option for duration of output file: match duration
of ‘longest’,’shortest’,or ‘first’ input file

* verbose=0 — if >0, prints ffmpeg command and doesn’t suppress ffmpeg output
(command line output is returned from this function)

* create_txt_ file=False - if True, also creates a second output file which
lists all files that were included in the mixdown

Returns ffmpeg command line output

opensoundscape.audio_tools.silence_filter (filename, smoothing_factor=10,
window_len_samples=256, over-
lap_len_samples=128, thresh-
old=None)

Identify whether a file is silent (0) or not (1)

Load samples from an mp3 file and identify whether or not it is likely to be silent. Silence is de-
termined by finding the energy in windowed regions of these samples, and normalizing the detected
energy by the average energy level in the recording.

If any windowed region has energy above the threshold, returns a 0; else returns 1.

12.4. Audio Tools 121

opensoundscape, Release 0.6.2

Parameters
» filename (str) — file to inspect
* smoothing_factor (int)— modifier to window_len_samples
* window_1len_samples — number of samples per window segment
* overlap_len_samples — number of samples to overlap each window segment
* threshold - threshold value (experimentally determined)

Returns O if file contains no significant energy over bakcground 1 if file contains signifi-
cant energy over bakcground

If threshold is None: returns net_energy over background noise

opensoundscape.audio_tools.window_energy (samples, window_len_samples=256,

overlap_len_samples=128)
Calculate audio energy with a sliding window

Calculate the energy in an array of audio samples
Parameters
* samples (np.ndarray) — array of audio samples loaded using librosa.load
* window_1len_samples — samples per window

* overlap_len_samples — number of samples shared between consecutive win-
dows

Returns list of energy level (float) for each window

12.5 Spectrogram

spectrogram.py: Utilities for dealing with spectrograms

class opensoundscape.spectrogram.MelSpectrogram (spectrogram, frequencies, times, deci-

bel_limits, window_samples=None,
overlap_samples=None,
window_type=None, au-

dio_sample_rate=None)
Immutable mel-spectrogram container

A mel spectrogram is a spectrogram with pseudo-logarithmically spaced frequency bins (see literature) rather
than linearly spaced bins.

See Spectrogram class an Librosa’s melspectrogram for detailed documentation.

NOTE: Here we rely on scipy’s spectrogram function (via Spectrogram) rather than on librosa’s _spectrogram
or melspectrogram, because the amplitude of librosa’s spectrograms do not match expectations. We only use
the mel frequency bank from Librosa.

classmethod from audio (audio, n_mels=64, window_samples=512, overlap_samples=256,
decibel_limits=(-100, -20), htk=False, norm=’slaney’, win-
dow_type="hann’, dB_scale=True)
Create a MelSpectrogram object from an Audio object

First creates a spectrogram and a mel-frequency filter bank, then computes the dot product of the filter
bank with the spectrogram.

122 Chapter 12. Audio and Spectrograms

opensoundscape, Release 0.6.2

The kwargs for the mel frequency bank are documented at: - https://librosa.org/doc/latest/
generated/librosa.feature.melspectrogram.html#librosa.feature.melspectrogram - https://librosa.org/doc/
latest/generated/librosa.filters.mel.html?librosa.filters.mel

Parameters

* n_mels — Number of mel bands to generate [default: 128] Note: n_mels should be chosen
for compatibility with the Spectrogram parameter window_samples. Choosing a value >
~ window_samples/10 will result in zero-valued rows while small values blend rows from
the original spectrogram.

* window_type — The windowing function to use [default: “hann”]

* window_samples — n samples per window [default: 512]

* overlap_samples — n samples shared by consecutive windows [default: 256]
* htk — use HTK mel-filter bank instead of Slaney, see Librosa docs [default: False]
* norm="'slanley' — mel filter bank normalization, see Librosa docs

* dB_scale=True — If True, rescales values to decibels, x=10*log10(x) - if dB_scale is
False, decibel_limits is ignored

Returns opensoundscape.spectrogram.MelSpectrogram object

plot (inline=True, fname=None, show_colorbar=False)
Plot the mel spectrogram with matplotlib.pyplot

We can’t use pcolormesh because it will smash pixels to achieve a linear y-axis, rather than preserving the
mel scale.

Parameters
* inline=True —
* fname=None - specify a string path to save the plot to (ending in .png/.pdf)
* show_colorbar - include image legend colorbar from pyplot

class opensoundscape.spectrogram.Spectrogram (spectrogram, frequencies, times, deci-
bel_limits, window_samples=None, over-
lap_samples=None, window_type=None,
audio_sample_rate=None)
Immutable spectrogram container

Can be initialized directly from spectrogram, frequency, and time values or created from an Audio object using
the .from_audio() method.

frequencies
(list) discrete frequency bins generated by fft

times
(list) time from beginning of file to the center of each window

spectrogram
a 2d array containing 10*log10(fft) for each time window

decibel limits
minimum and maximum decibel values in .spectrogram

window_samples
number of samples per window when spec was created [default: none]

overlap_ samples
number of samples overlapped in consecutive windows when spec was created [default: none]

12.5. Spectrogram 123

https://librosa.org/doc/latest/generated/librosa.feature.melspectrogram.html#librosa.feature.melspectrogram
https://librosa.org/doc/latest/generated/librosa.feature.melspectrogram.html#librosa.feature.melspectrogram
https://librosa.org/doc/latest/generated/librosa.filters.mel.html?librosa.filters.mel
https://librosa.org/doc/latest/generated/librosa.filters.mel.html?librosa.filters.mel

opensoundscape, Release 0.6.2

window_type
window fn used to make spectrogram, eg ‘hann’ [default: none]

audio_sample_rate
sample rate of audio from which spec was created [default: none]

amplitude (freq_range=None)
create an amplitude vs time signal from spectrogram

by summing pixels in the vertical dimension
Args freq_range=None: sum Spectrogrm only in this range of [low, high] frequencies in Hz (if None, all
frequencies are summed)
Returns a time-series array of the vertical sum of spectrogram value
bandpass (min_f, max_f, out_of_bounds_ok=True)
extract a frequency band from a spectrogram
crops the 2-d array of the spectrograms to the desired frequency range
Parameters
e min_f - low frequency in Hz for bandpass
* max_f — high frequency in Hz for bandpass

e out_of_bounds_ok — (bool) if False, raises ValueError if min_f or max_f are not
within the range of the original spectrogram’s frequencies [default: True]

Returns bandpassed spectrogram object

duration ()
calculate the ammount of time represented in the spectrogram

Note: time may be shorter than the duration of the audio from which the spectrogram was created, because
the windows may align in a way such that some samples from the end of the original audio were discarded

classmethod from_ audio (audio, window_type="hann’, window_samples=512, over-

lap_samples=256, decibel_limits=(-100, -20), dB_scale=True)
create a Spectrogram object from an Audio object

Parameters

* window_type="hann" - see scipy.signal.spectrogram docs for description of window
parameter

* window_samples=512 — number of audio samples per spectrogram window (pixel)
* overlap_samples=256 — number of samples shared by consecutive windows

e = (decibel_limits) — limit the dB values to (min,max) (lower values set to min,
higher values set to max)

* dB_scale=True — If True, rescales values to decibels, x=10*log10(x) - if dB_scale is
False, decibel_limits is ignored

Returns opensoundscape.spectrogram.Spectrogram object

classmethod from_ file ()
create a Spectrogram object from a file

Parameters file — path of image to load

Returns opensoundscape.spectrogram.Spectrogram object

124 Chapter 12. Audio and Spectrograms

opensoundscape, Release 0.6.2

limit_db_range (min_db=-100, max_db=-20)
Limit the decibel values of the spectrogram to range from min_db to max_db

values less than min_db are set to min_db values greater than max_db are set to max_db
similar to Audacity’s gain and range parameters
Parameters
* min_db — values lower than this are set to this
* max_db — values higher than this are set to this
Returns Spectrogram object with db range applied

linear_scale (feature_range=(0, 1))
Linearly rescale spectrogram values to a range of values using in_range as decibel_limits

Parameters feature_range — tuple of (low,high) values for output
Returns Spectrogram object with values rescaled to feature_range

min_max_scale (feature_range=(0, 1))
Linearly rescale spectrogram values to a range of values using in_range as minimum and maximum

Parameters feature_range — tuple of (low,high) values for output
Returns Spectrogram object with values rescaled to feature_range

net_amplitude (signal_band, reject_bands=None)
create amplitude signal in signal_band and subtract amplitude from reject_bands

rescale the signal and reject bands by dividing by their bandwidths in Hz (amplitude of each reject_band
is divided by the total bandwidth of all reject_bands. amplitude of signal_band is divided by badwidth of
signal_band.)

Parameters
* signal_band - [low,high] frequency range in Hz (positive contribution)
* band (reject) - list of [low,high] frequency ranges in Hz (negative contribution)
return: time-series array of net amplitude

plot (inline=True, fname=None, show_colorbar=False)
Plot the spectrogram with matplotlib.pyplot

Parameters
¢ inline=True -
* fname=None - specify a string path to save the plot to (ending in .png/.pdf)
* show_colorbar - include image legend colorbar from pyplot

to_image (shape=None, mode="RGB’, colormap=None)
Create a Pillow Image from spectrogram

Linearly rescales values in the spectrogram from self.decibel_limits to [255,0]

Default of self.decibel_limits on load is [-100, -20], so, e.g., -20 db is loudest -> black, -100 db is quietest
-> white

Parameters
* destination - a file path (string)

* shape=None - tuple of image dimensions as (height, width),

12.5. Spectrogram 125

opensoundscape, Release 0.6.2

* mode="RGB" — RGB for 3-channel output “L” for 1-channel output

* colormap=None — if None, greyscale spectrogram is generated Can be any matplotlib
colormap name such as ‘jet’ Note: if mode="L", colormap will have no effect on output

Returns Pillow Image object

trim (start_time, end_time)
extract a time segment from a spectrogram

Parameters
e start time —in seconds
* end_time —in seconds
Returns spectrogram object from extracted time segment

window_length ()
calculate length of a single fft window, in seconds:

window_start_times ()
get start times of each window, rather than midpoint times

window_step ()
calculate time difference (sec) between consecutive windows’ centers

126 Chapter 12. Audio and Spectrograms

cHAPTER 13

Machine Learning

13.1 Convolutional Neural Networks

classes for pytorch machine learning models in opensoundscape

For tutorials, see notebooks on opensoundscape.org

class opensoundscape.torch.models.cnn.CnnResampleLoss (architecture, classes, sin-
gle_target=False)
Subclass of PytorchModel with ResampleLoss.

ResampleLoss may perform better than BCE Loss for multitarget problems in some scenarios.

Parameters

* architecture - a model architecture object, for example one generated with the
torch.architectures.cnn_architectures module

* classes — list of class names. Must match with training dataset classes.
* single_target —

— True: model expects exactly one positive class per sample

— False: samples can have an number of positive classes

[default: False]

class opensoundscape.torch.models.cnn.InceptionV3 (classes,
freeze_feature_extractor=False,
use_pretrained=True, sin-
gle_target=False)

train_epoch ()
perform forward pass, loss, backpropagation for one epoch

need to override parent because Inception returns different outputs from the forward pass (final and auxil-
iary layers)

127

opensoundscape, Release 0.6.2

Returns: (targets, predictions, scores) on training files

class opensoundscape.torch.models.cnn.InceptionV3Resampleloss (classes,
freeze_feature_extractor=False,
use_pretrained=True,
sin-
gle_target=False)

class opensoundscape.torch.models.cnn.PytorchModel (architecture, classes, sin-

gle_target=False)
Generic Pytorch Model with .train(), .predict(), and .save()

flexible architecture, optimizer, loss function, parameters
for tutorials and examples see opensoundscape.org
Parameters

* architecture — EITHER a pytorch model object (subclass of torch.nn.Module), for
example one generated with the cnn_architectures module OR a string matching one of the
architectures listed by cnn_architectures.list_architectures(), eg ‘resnetl8’. - If a string is
provided, uses default parameters

(including use_pretrained=True)
* classes - list of class names. Must match with training dataset classes if training.
* single_target —
— True: model expects exactly one positive class per sample
— False: samples can have an number of positive classes
[default: False]

predict (prediction_dataset, batch_size=1, num_workers=0, activation_layer=None, bi-
nary_preds=None, threshold=0.5, error_log=None)
Generate predictions on a dataset

Choose to return any combination of scores, labels, and single-target or multi-target binary predictions.
Also choose activation layer for scores (softmax, sigmoid, softmax then logit, or None).

Note: the order of returned dataframes is (scores, preds, labels)
Parameters

* prediction_dataset - a Preprocessor or DataSset object that returns ten-
sors, such as AudioToSpectrogramPreprocessor (no augmentation) or CnnPreprocessor
(w/augmentation) from opensoundscape.datasets

* batch_size — Number of files to load simultaneously [default: 1]
* num_workers — parallelization (ie cpus or cores), use O for current process [default: 0]

* activation_layer — Optionally apply an activation layer such as sigmoid or softmax
to the raw outputs of the model. options: - None: no activation, return raw scores (ie logit,
[-inf:inf]) - ‘softmax’: scores all classes sum to 1 - ‘sigmoid’: all scores in [0,1] but don’t
sum to 1 - ‘softmax_and_logit’: applies softmax first then logit [default: None]

* binary_preds — Optionally return binary (thresholded 0/1) predictions options: - ‘sin-
gle_target’: max scoring class = 1, others = 0 - ‘multi_target’: scores above threshold =1,
others = 0 - None: do not create or return binary predictions [default: None]

* threshold - prediction threshold(s) for sigmoid scores. Only relevant when bi-
nary_preds == ‘multi_target’

128 Chapter 13. Machine Learning

opensoundscape, Release 0.6.2

* error_log — if not None, saves a list of files that raised errors to the specified file
location [default: None]

Returns: 3 DataFrames (or Nones), w/index matching prediciton_dataset.df scores: post-
activation_layer scores predictions: 0/1 preds for each class labels: labels from dataset (if
available)

Note: if loading an audio file raises a PreprocessingError, the scores and predictions for that sample
will be np.nan

Note: if no return type selected for labels/scores/preds, returns None instead of a DataFrame in the returned
tuple

split_and_predict (prediction_dataset, file_batch_size=1, num_workers=0, activa-
tion_layer=None, binary_preds=None, threshold=0.5, error_log=None,

clip_batch_size=None)
Generate predictions on long audio files

This function integrates in-pipline splitting of audio files into shorter clips with clip-level prediction.
The input dataset should be a LongAudioPreprocessor object

Choose to return any combination of scores, labels, and single-target or multi-target binary predictions.
Also choose activation layer for scores (softmax, sigmoid, softmax then logit, or None).

Parameters
* prediction_dataset — a LongAudioPreprocessor object
e file batch_size — Number of audio files to load simultaneously [default: 1]
* num_workers — parallelization (ie cpus or cores), use O for current process [default: 0]

* activation_layer — Optionally apply an activation layer such as sigmoid or softmax
to the raw outputs of the model. options: - None: no activation, return raw scores (ie logit,
[-inf:inf]) - ‘softmax’: scores all classes sum to 1 - ‘sigmoid’: all scores in [0,1] but don’t
sum to 1 - ‘softmax_and_logit’: applies softmax first then logit [default: None]

* binary_preds — Optionally return binary (thresholded 0/1) predictions options: - ‘sin-
gle_target’: max scoring class = 1, others = 0 - ‘multi_target’: scores above threshold =1,
others = 0 - None: do not create or return binary predictions [default: None]

* threshold - prediction threshold for sigmoid scores. Only relevant when binary_preds
== ‘multi_target’

* clip_batch_size — batch size of preprocessed samples for CNN prediction
* error_log - if not None, saves a list of files that raised errors to the specified file

location [default: None]

Returns: DataFrames with multi-index: path, clip start & end times scores: post-activation_layer
scores predictions: 0/1 preds for each class, if binary_preds given unsafe_samples: list of samples
that failed to preprocess

Note: if loading an audio file raises a PreprocessingError, the scores and predictions for that sample
will be np.nan
Note: if no return type selected for scores/preds, returns None instead of a DataFrame for predictions

Note: currently does not support passing labels. Meaning of a label is ambiguous since the original files
are split into clips during prediction (output values are for clips, not entire file)

13.1. Convolutional Neural Networks 129

opensoundscape, Release 0.6.2

train (train_dataset, valid_dataset, epochs=1, batch_size=1, num_workers=0, save_path=".,
save_interval=1, log_interval=10, unsafe_sample_log="./unsafe_samples.log’)
train the model on samples from train_dataset

If customized loss functions, networks, optimizers, or schedulers are desired, modify the respective at-

tributes before calling .train().

Parameters

train_dataset — a Preprocessor that loads sample (audio file + label) to Tensor in
batches (see docs/tutorials for details)

valid_dataset — a Preprocessor for evaluating performance

epochs — number of epochs to train for [default=1] (1 epoch constitutes 1 view of each
training sample)

batch_size — number of training files to load/process before re-calculating the loss
function and backpropagation

num_workers — parallelization (ie, cores or cpus) Note: use 0 for single (root) process
(not 1)

save_path - location to save intermediate and best model objects [default="", ie cur-
rent location of script]

save_interval - interval in epochs to save model object with weights [default:1]
Note: the best model is always saved to best.model in addition to other saved epochs.

log_interval - interval in epochs to evaluate model with validation dataset and print
metrics to the log

unsafe_sample_log —file path: log all samples that failed in preprocessing (file writ-
ten when training completes) - if None, does not write a file

train_epoch ()
perform forward pass, loss, backpropagation for one epoch

Returns: (targets, predictions, scores) on training files

class opensoundscape.torch.models.cnn.Resnetl8Binary (classes, use_pretrained=True)
Subclass of PytorchModel with Resnet18 architecture

This subclass allows separate training parameters for the feature extractor and classifier via optimizer_params

If you do not need separate training parameters for the feature extraction and classification blocks, you can

create a model with resnet18 architecture simply by using PytorchModel(‘resnet18’ classes...).

Parameters

* classes - list of class names. Must match with training dataset classes.

* single_target -

— True: model expects exactly one positive class per sample

— False: samples can have an number of positive classes

[default: False]

class opensoundscape.torch.models.cnn.Resnetl8Multiclass (classes, sin-

gle_target=False,
use_pretrained=True)

Multi-class model with resnet18 architecture and ResampleLoss.

130

Chapter 13. Machine Learning

opensoundscape, Release 0.6.2

Notes
Allows separate parameters for feature & classifier blocks via self.optimizer_params’s keys: “feature” and “clas-
sifier”.

If you do not need separate training parameters for the feature extraction and classification blocks, you can
create a model with resnet18 architecture simply by using PytorchModel(‘resnet18’ classes...).

Can be single or multi-target.
Uses “ResampleLoss” loss function.
Parameters
* classes — list of class names. Must match with training dataset classes.
* single_target —
— True: model expects exactly one positive class per sample
— False: samples can have an number of positive classes
[default: False]

opensoundscape.torch.models.cnn.load_model (path, device=None)
load a saved model object

Parameters

* path — file path of saved model

* device — which device to load into, eg ‘cuda:1’

* [default — None] will choose first gpu if available, otherwise cpu
Returns a model object with loaded weights

opensoundscape.torch.models.cnn.load_outdated_model (path, model_class, archi-
tecture_constructor=None,

device=None)
load a CNN saved with a previous version of OpenSoundscape

This function enables you to load models saved with opso 0.4.x, 0.5.x, and 0.6.0 when using >=0.6.1. For
models created with 0.6.1 and above, use load_model(path) which is more robust.

Note: If you are loading a model created with opensoundscape 0.4.x, you most likely want to specify
model_class = opensoundscape.torch.models.CnnResnetl8Binary. If your model was created with opensound-
scape 0.5.x or 0.6.0, you need to choose the appropriate class.

Note: for future use of the loaded model, you can simply call model.save(path) after creating it, then reload it
with model = load_model(path). The saved model will be fully compatible with opensoundscape >=0.6.1.

Examples: ‘““ #load a Dbinary resnetl§ model from opso 0.4.x, 0.5.x, or
0.6.0 from opensoundscape.torch.models.cnn import Resnet18Binary model =
load_outdated_model(‘old_model.tar’,model_class=Resnet18Binary)

#load a resnet50 model of class PytorchModel created with opso 0.5.0 from opensoundscape.torch.models.cnn
import PytorchModel from opensoundscape.torch.architectures.cnn_architectures import resnet50 model_050 =

load_outdated_model(‘opso050_pytorch_model_r50.model’,model_class=PytorchModel,architecture_constructor=resnet50)

Parameters

* path — path to model file, ie .model or .tar file

13.1. Convolutional Neural Networks 131

opensoundscape, Release 0.6.2

* model_class — the opensoundscape class to create, eg PytorchModel, CnnResam-
pleLoss, or Resnet18Binary from opensoundscape.torch.models.cnn

* architecture_constructor - the function that creates desired cnn architecture eg
opensoundscape.torch.architectures.cnn_architectures.resnet18 Note: this is only required
for classes that take the architecture as an input, for instance PytorchModel or CnnResam-
pleLoss. It’s not required for e.g. Resnet18Binary or InceptionV3 which internally create a
specific architecture.

* device - optionally specify a device to map tensors onto, eg ‘cpu’, ‘cuda:0’,
‘cuda:1’[default: None] - if None, will choose cuda:0 if cuda is available, otherwise chooses
cpu

Returns a cnn model object with the weights loaded from the saved model

class opensoundscape.torch.models.utils.BaseModule
Base class for a pytorch model pipeline class.

All child classes should define load, save, etc

opensoundscape.torch.models.utils.apply activation_layer (x, activa-

tion_layer=None)
applies an activation layer to a set of scores

Parameters
* x —input values

* activation_layer —

None [default]: return original values

“softmax’: apply softmax activation

’sigmoid’: apply sigmoid activation
— ’softmax_and_logit’: apply softmax then logit transform
Returns values with activation layer applied

opensoundscape.torch.models.utils.cas_dataloader (dataset, batch_size, num_workers)
Return a dataloader that uses the class aware sampler

Class aware sampler tries to balance the examples per class in each batch. It selects just a few classes to be
present in each batch, then samples those classes for even representation in the batch.

Parameters
* dataset — a pytorch dataset type object
* batch_size - see Datal.oader
e num workers — see Datal.oader

opensoundscape.torch.models.utils.collate_lists_of_audio_clips (batch)
Collate function for splitting + prediction of long audio files

Puts each data field into a tensor with outer dimension batch size
Additionally, concats the dfs from each audio file into one long df for the entire batch

opensoundscape.torch.models.utils.get_batch (array, batch_size, batch_number)
get a single slice of a larger array

using the batch size and batch index, from zero

Parameters

132 Chapter 13. Machine Learning

opensoundscape, Release 0.6.2

* array - iterable to split into batches

* batch_size — num elements per batch

* batch_number — index of batch
Returns one batch (subset of array)

Note: the final elements are returned as the last batch even if there are fewer than batch_size

Example

if array=[1,2,3,4,5,6,7] then:
 get_batch(array,3,0) returns [1,2,3]
» get_batch(array,3,3) returns [7]

opensoundscape.torch.models.utils.get_dataloader (safe_dataset, batch_size=64,
num_workers=1, shuffle=False,
sampler="")

Create a DatalLoader from a DataSet - chooses between normal pytorch Datal.oader and ImbalancedDataset-
Sampler. - Sampler: None -> default Datal.oader; ‘imbalanced’->ImbalancedDatasetSampler

opensoundscape.torch.models.utils.tensor_binary predictions (scores, mode, thresh-

) o) old=None)
generate binary 0/1 predictions from continuous scores

Parameters
* scores — torch.Tensor of dim (batch_size, n_classes) with input scores [-inf:inf]
* mode — ‘single_target’, ‘multi_target’, or None (return empty tensor)
* threshold — minimum score to predict 1, if mode=="multi_target’. threshold

* be a single value for all classes or a list of
class-specific values. (can)-—

Returns torch.Tensor of 0/1 predictions in same shape as scores

Note: expects real-valued (unbounded) input scores, i.e. scores take values in [-inf, inf]. Sigmoid layer is
applied before multi-target prediction, so the threshold should be in [0,1].

Module to initialize PyTorch CNN architectures with custom output shape

This module allows the use of several built-in CNN architectures from PyTorch. The architecture refers to the specific
layers and layer input/output shapes (including convolution sizes and strides, etc) - such as the ResNet18 or Inception
V3 architecture.

We provide wrappers which modify the output layer to the desired shape (to match the number of classes). The way to
change the output layer shape depends on the architecture, which is why we need a wrapper for each one. This code
is based on pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html

To use these wrappers, for example, if your model has 10 output classes, write
my_arch=resnet18(10)

Then you can initialize a model object from opensoundscape.torch.models.cnn with your architecture:
model=PytorchModel(my_arch,classes)

or override an existing model’s architecture:

model.network = my_arch

13.1. Convolutional Neural Networks 133

opensoundscape, Release 0.6.2

Note: the InceptionV3 architecture must be used differently than other architectures - the easiest way is to simply use
the InceptionV3 class in opensoundscape.torch.models.cnn.

opensoundscape.torch.architectures.cnn_architectures.alexnet (num_classes,
freeze_feature_extractor=False,

use_pretrained=True)
Wrapper for AlexNet architecture

input size = 224
Parameters
* num_classes — number of output nodes for the final layer

* freeze_ feature_extractor — if False (default), entire network will have gradients
and can train if True, feature block is frozen and only final layer is trained

* use_pretrained - if True, uses pre-trained ImageNet features from Pytorch’s model
Z00.

opensoundscape.torch.architectures.cnn_architectures.densenetl21l (num_classes,
freeze_feature_extractor=False,

use_pretrained=True)
Wrapper for densenet121 architecture

input size = 224
Parameters
* num_classes — number of output nodes for the final layer

* freeze_feature_extractor - if False (default), entire network will have gradients
and can train if True, feature block is frozen and only final layer is trained

* use_pretrained — if True, uses pre-trained ImageNet features from Pytorch’s model
700.

opensoundscape.torch.architectures.cnn_architectures.inception_v3 (num_classes,
freeze_feature_extractor=False,

use_pretrained=True)
Wrapper for Inception v3 architecture

Input: 229x229

WARNING: expects (299,299) sized images and has auxiliary output. See InceptionV3 class in opensound-
scape.torch.models.cnn for use.

Parameters
* num_classes — number of output nodes for the final layer

* freeze_feature_extractor - if False (default), entire network will have gradients
and can train if True, feature block is frozen and only final layer is trained

* use_pretrained - if True, uses pre-trained ImageNet features from Pytorch’s model
700.

opensoundscape.torch.architectures.cnn_architectures.resnetl01 (num_classes,
freeze_feature_extractor=False,

use_pretrained=True)
Wrapper for ResNet101 architecture

input_size = 224

Parameters

134 Chapter 13. Machine Learning

opensoundscape, Release 0.6.2

* num_classes — number of output nodes for the final layer

» freeze_ feature_extractor — if False (default), entire network will have gradients
and can train if True, feature block is frozen and only final layer is trained

* use_pretrained - if True, uses pre-trained ImageNet features from Pytorch’s model
z00.

opensoundscape.torch.architectures.cnn_architectures.resnetl52 (num_classes,
freeze_feature_extractor=False,

use_pretrained=True)
Wrapper for ResNet152 architecture

input_size = 224
Parameters
* num_classes — number of output nodes for the final layer

* freeze_feature_extractor — if False (default), entire network will have gradients
and can train if True, feature block is frozen and only final layer is trained

* use_pretrained - if True, uses pre-trained ImageNet features from Pytorch’s model
700.

opensoundscape.torch.architectures.cnn_architectures.resnetl8 (num_classes,
freeze_feature_extractor=False,

use_pretrained=True)
Wrapper for ResNet18 architecture

input_size = 224
Parameters
* num_classes — number of output nodes for the final layer

» freeze_feature_extractor - if False (default), entire network will have gradients
and can train if True, feature block is frozen and only final layer is trained

* use_pretrained - if True, uses pre-trained ImageNet features from Pytorch’s model
z0o0.

opensoundscape.torch.architectures.cnn_architectures.resnet34 (num_classes,
freeze_feature_extractor=False,

use_pretrained=True)
Wrapper for ResNet34 architecture

input_size = 224
Parameters
* num_classes — number of output nodes for the final layer

» freeze_ feature_extractor — if False (default), entire network will have gradients
and can train if True, feature block is frozen and only final layer is trained

* use_pretrained - if True, uses pre-trained ImageNet features from Pytorch’s model
Z00.

opensoundscape.torch.architectures.cnn_architectures.resnet50 (num_classes,
freeze_feature_extractor=False,

use_pretrained=True)
Wrapper for ResNet50 architecture

input_size = 224

13.1. Convolutional Neural Networks 135

opensoundscape, Release 0.6.2

Parameters
* num_classes — number of output nodes for the final layer

» freeze_feature_extractor - if False (default), entire network will have gradients
and can train if True, feature block is frozen and only final layer is trained

* use_pretrained - if True, uses pre-trained ImageNet features from Pytorch’s model
z0o0.

opensoundscape.torch.architectures.cnn_architectures.set_parameter_requires_grad (model,

freeze_feature
if necessary, remove gradients of all model parameters

if freeze_feature_extractor is True, we set requires_grad=False for all features in the feature extraction block.
We would do this if we have a pre-trained CNN and only want to change the shape of the final layer, then train
only that final classification layer without modifying the weights of the rest of the network.

opensoundscape.torch.architectures.cnn_architectures.squeezenetl_0 (num_classes,
freeze_feature_extractor=False,

use_pretrained=True)
Wrapper for squeezenet architecture

input size = 224
Parameters
* num_classes — number of output nodes for the final layer

» freeze_ feature_extractor - if False (default), entire network will have gradients
and can train if True, feature block is frozen and only final layer is trained

* use_pretrained - if True, uses pre-trained ImageNet features from Pytorch’s model
z0o.

opensoundscape.torch.architectures.cnn_architectures.vggll_bn (num_classes,
freeze_feature_extractor=False,

use_pretrained=True)
Wrapper for vggl1 architecture

input size = 224
Parameters
* num_classes — number of output nodes for the final layer

» freeze_ feature_extractor — if False (default), entire network will have gradients
and can train if True, feature block is frozen and only final layer is trained

* use_pretrained - if True, uses pre-trained ImageNet features from Pytorch’s model
Z00.

defines feature extractor and Architecture class for ResNet CNN

This implementation of the ResNet18 architecture allows for separate access to the feature extraction and classification
blocks. This can be useful, for instance, to freeze the feature extractor and only train the classifier layer; or to specify
different learning rates for the two blocks.

This implementation is used in the Resnetl8Binary and Resnetl8Multiclass classes of opensound-
scape.torch.models.cnn.

136 Chapter 13. Machine Learning

opensoundscape, Release 0.6.2

class opensoundscape.torch.architectures.resnet.ResNetArchitecture (num_cls,
weights_init="ImageNet’,
num_layers=18,
init_classifier_weights=False)
ResNet architecture with 18 or 50 layers

This implementation enables separate access to feature and classification blocks.
Parameters

* num_cls — number of classes (int)

* weights_init -
— “ImageNet”: load the pre-trained weights for ImageNet dataset
— path: load weights from a path on your computer or a url
— None: initialize with random weights

* num_layers — 18 for Resnet18 or 50 for Resnet50

* init_classifier weights -
— if True, load the weights of the classification layer as well as

feature extraction layers - if False (default), only load the weights of the feature extraction
layers

load (init_path, init_classifier_weights=True, verbose=False)
load state dict (weights) of the feature+classifier optionally load only feature weights not classifier weights

Parameters
* init_path-
— url containing “http”: download weights from web
— path: load weights from local path
* init_classifier weights -
— if True, load the weights of the classification layer as well as

feature extraction layers - if False (default), only load the weights of the feature extraction
layers

* verbose - if True, print missing/unused keys [default: False]

class opensoundscape.torch.architectures.resnet.ResNetFeature (block, layers,
zero_init_residual="Fualse,
groups=1,
width_per_group=64,
re-

place_stride_with_dilation=None,
norm_layer=None)

class opensoundscape.torch.architectures.utils.BaseArchitecture
Base architecture for reference.

class opensoundscape.torch.architectures.utils.CompositeArchitecture (*args,
*Ekwargs)
Architecture with separate feature and classsifier blocks

13.1. Convolutional Neural Networks 137

opensoundscape, Release 0.6.2

13.2 Data Selection

opensoundscape.data_selection.resample (df, n_samples_per_class, upsample=True, down-
sample=True, random_state=None)
resample a one-hot encoded label df for a target n_samples_per_class

Parameters

* df - dataframe with one-hot encoded labels: columns are classes, index is sample
name/path

* n_samples_per_class — target number of samples per class

* upsample —if True, duplicate samples for classes with <n samples to get to n samples
* downsample - if True, randomly sample classis with >n samples to get to n samples
* random_state — passed to np.random calls. If None, random state is not fixed.

Note: The algorithm assumes that the label df is single-label. If the label df is multi-label, some classes can end
up over-represented.

Note 2: The resulting df will have samples ordered by class label, even if the input df had samples in a random
order.

opensoundscape.data_selection.upsample (input_df, label_column="Labels’, ran-

dom_state=None)
Given a input DataFrame of categorical labels, upsample to maximum value

Upsampling removes the class imbalance in your dataset. Rows for each label are repeated up to max_count //
rows. Then, we randomly sample the rows to fill up to max_count.

The input df is NOT one-hot encoded in this case, but instead contains categorical labels in a specified la-
bel_columns

Parameters
* input_df — A DataFrame to upsample
* label_column — The column to draw unique labels from
* random_state — Set the random_state during sampling
Returns An upsampled DataFrame

Return type df

13.3 Grad Cam

GradCAM is a method of visualizing the activation of the network on parts of an image

Author: Kazuto Nakashima # URL: http://kazuto1011.github.io # Created: 2017-05-26

13.4 Loss Functions

loss function classes to use with opensoundscape models

class opensoundscape.torch.loss.BCEWithLogitsLoss_hot
use pytorch’s nn.BCEWithLogitsLoss for one-hot labels by simply converting y from long to float

138 Chapter 13. Machine Learning

http://kazuto1011.github.io

opensoundscape, Release 0.6.2

class opensoundscape.torch.loss.CrossEntropyLoss_hot
use pytorch’s nn.CrossEntropyLoss for one-hot labels by converting labels from 1-hot to integer labels

throws a ValueError if labels are not one-hot

class opensoundscape.torch.loss.Resampleloss (class_freq, reduction="mean’,
loss_weight=1.0)

opensoundscape.torch.loss.reduce_loss (loss, reduction)
Reduce loss as specified.

Parameters

¢ loss (Tensor)— Elementwise loss tensor.

* reduction (str) - Options are “none”, “mean” and “sum”.
Returns Reduced loss tensor.
Return type Tensor

opensoundscape.torch.loss.weight_reduce_loss (loss, weight=None, reduction="mean’,
avg_factor=None)
Apply element-wise weight and reduce loss.

Parameters

* loss (Tensor) — Element-wise loss.

* weight (Tensor) — Element-wise weights.

* reduction (str)— Same as built-in losses of PyTorch.

* avg_factor (float)— Avarage factor when computing the mean of losses.
Returns Processed loss values.

Return type Tensor

13.5 Safe Dataloading

Dataset wrapper to handle errors gracefully in Preprocessor classes

A SafeDataset handles errors in a potentially misleading way: If an error is raised while trying to load a sample,
the SafeDataset will instead load a different sample. The indices of any samples that failed to load will be stored in

._unsafe_indices.

The behavior may be desireable for training a model, but could cause silent errors when predicting a model (replacing a
bad file with a different file), and you should always be careful to check for ._unsafe_indices after using a SafeDataset.

based on an implementation by @msamogh in nonechucks (github.com/msamogh/nonechucks/)

class opensoundscape.torch.safe_dataset.SafeDataset (dataset, unsafe_behavior, ea-
ger_eval=False)
A wrapper for a Dataset that handles errors when loading samples

WARNING: When iterating, will skip the failed sample, but when using within a Dataloader, finds the next
good sample and uses it for the current index (see __getitem__).

Parameters
» dataset — a torch Dataset instance or child such as a Preprocessor

* eager_eval — If True, checks if every file is able to be loaded during initialization (logs
_safe_indices and _unsafe_indices)

13.5. Safe Dataloading 139

opensoundscape, Release 0.6.2

Attributes: _safe_indices and _unsafe_indices can be accessed later to check which samples threw errors.

_build_index ()
tries to load each sample, logs _safe_indices and _unsafe_indices

__getitem__ (index)
If loading an index fails, keeps trying the next index until success

_safe_get_item()
Tries to load a sample, returns None if error occurs

is_index_built
Returns True if all indices of the original dataset have been classified into safe_samples_indices or _un-
safe_samples_indices.

13.6 Sampling

classes for strategically sampling within a Datal.oader

class opensoundscape.torch.sampling.ClassAwareSampler (labels, num_samples_cls=1)
In each batch of samples, pick a limited number of classes to include and give even representation to each class

class opensoundscape.torch.sampling.ImbalancedDatasetSampler (dataset, in-
dices=None,
num_samples=None,
call-

back_get_label=None)
Samples elements randomly from a given list of indices for imbalanced dataset :param indices: a list of indices
:type indices: list, optional :param num_samples: number of samples to draw :type num_samples: int, optional
:param callback_get_label func: a callback-like function which takes two arguments - dataset and index

13.7 Performance Metrics

opensoundscape.metrics.binary_metrics (targets, preds, class_names=[0, 1])
labels should be single-target

opensoundscape.metrics.multiclass_metrics (fargets, preds, class_names)
provide a list or np.array of 0,1 targets and predictions

opensoundscape.metrics.predict (scores, single_target=False, threshold=0.5)
convert numeric scores to binary predictions

return 0/1 for an array of scores: samples (rows) x classes (columns)
Parameters
* scores —a 2-d list or np.array. row=sample, columns=classes

* single_target - if True, predict 1 for highest scoring class per sample, 0 for other
classes. If False, predict 1 for all scores > threshold [default: False]

* threshold - Predict 1 for score > threshold. only used if single_target = False. [default:
0.5]

140 Chapter 13. Machine Learning

cHAPTER 14

Preprocessing

14.1 Image Augmentation

Transforms and augmentations for PIL.Images

opensoundscape.preprocess.img_augment .time_split (img, seed=None)
Given a PIL.Image, split into left/right parts and swap

Randomly chooses the slicing location For example, if 4 chosen
abcdefghijklmnop *
hijklmnop + abcdefg

Parameters img — A PIL.Image

Returns A PIL.Image

14.2 Preprocessing Actions

Actions for augmentation and preprocessing pipelines

This module contains Action classes which act as the elements in Preprocessor pipelines. Action classes have go(),
on(), off(), and set() methods. They take a single sample of a specific type and return the transformed or augmented
sample, which may or may not be the same type as the original.

See the preprocessor module and Preprocessing tutorial for details on how to use and create your own actions.

class opensoundscape.preprocess.actions.ActionContainer
this is a container object which holds instances of Action child-classes

the Actions it contains each have .go(), .on(), .off(), .set(), .get()

The actions are un-ordered and may not all be used. In preprocessor objects such as AudioToSpectrogramPre-
processor, Actions from the action container are listed in a pipeline(list), which defines their order of use.

141

opensoundscape, Release 0.6.2

To add actions to the container: action_container.loader = AudioLoader() To set parameters of actions:
tion_container.loader.set(param=value,.. .)

Methods: list_actions()

class opensoundscape.preprocess.actions.AudioClipLoader (**kwargs)

Action to load only a specific segment of an audio file
Loads an audio file or part of a file. see Audio.from_file() for documentation.
Parameters Audio.from_ file (see)—

Note: default sample_rate=None means use file’s sample rate, don’t resample

class opensoundscape.preprocess.actions.AudioLoader (**kwargs)

Action child class for Audio.from_file() (path -> Audio)
Loads an audio file or part of a file. see Audio.from_file() for documentation.
Parameters Audio.from_file (see)—

Note: default sample_rate=None means use file’s sample rate, don’t resample

class opensoundscape.preprocess.actions.AudioToMelSpectrogram (**kwargs)

Action child class for MelSpectrogram.from_audio() (Audio -> MelSpectrogram)
see spectrogram.MelSpectrogram.from_audio for documentation

Parameters

* n_mels — Number of mel bands to generate [default: 128] Note: n_mels should be chosen
for compatibility with the Spectrogram parameter window_samples. Choosing a value > ~
window_samples/10 will result in zero-valued rows while small values blend rows from the
original spectrogram.

* window_type — The windowing function to use [default: “hann’’]

* window_samples — n samples per window [default: 512]

* overlap_samples — n samples shared by consecutive windows [default: 256]
* htk — use HTK mel-filter bank instead of Slaney, see Librosa docs [default: False]
* norm="'slanley' — mel filter bank normalization, see Librosa docs

* dB_scale=True — If True, rescales values to decibels, x=10*log10(x) - if dB_scale is
False, decibel_limits is ignored

class opensoundscape.preprocess.actions.AudioToSpectrogram (**kwargs)

Action child class for Spectrogram.from_audio() (Audio -> Spectrogram)
see spectrogram.Spectrogram.from_audio for documentation

Parameters

* window_type="hann" — see scipy.signal.spectrogram docs for description of window
parameter

* window_samples=512 — number of audio samples per spectrogram window (pixel)
* overlap_samples=256 — number of samples shared by consecutive windows

* =(decibel_1limits)- limitthe dB values to (min,max) (lower values set to min, higher
values set to max)

* dB_scale=True — If True, rescales values to decibels, x=10*log10(x) - if dB_scale is
False, decibel_limits is ignored

ac-

142

Chapter 14. Preprocessing

opensoundscape, Release 0.6.2

class opensoundscape.preprocess.actions.AudioTrimmer (**kwargs)
Action child class for trimming audio (Audio -> Audio)

Trims an audio file to desired length Allows audio to be trimmed from start or from a random time Optionally
extends audio shorter than clip_length with silence

Parameters
* audio_length — desired final length (sec); if None, no trim is performed

* extend - if True, clips shorter than audio_length are extended with silence to required
length

* random_trim — if True, a random segment of length audio_length is chosen from the
input audio. If False, the file is trimmed from O seconds to audio_length seconds.

class opensoundscape.preprocess.actions.BaseAction (**kwargs)
Parent class for all Actions (used in Preprocessor pipelines)

New actions should subclass this class.

Subclasses should set self.requires_labels = True if go() expects (X,y) instead of (X). y is a row of a dataframe
(apd.Series) with index (.name) = original file path, columns=class names, values=labels (0,1). X is the sample,
and can be of various types (path, Audio, Spectrogram, Tensor, etc). See ImgOverlay for an example of an
Action that uses labels.

class opensoundscape.preprocess.actions.FrequencyMask (**kwargs)
add random horizontal bars over image

Parameters
* max_masks — max number of horizontal bars [default: 3]

* max_width — maximum size of horizontal bars as fraction of image height

go (x)
torch Tensor in, torch Tensor out
class opensoundscape.preprocess.actions.ImgOverlay (overlay_df, audio_length,
loader_pipeline, update_labels,
**kwargs)

iteratively overlay images on top of eachother

Overlays images from overlay_df on top of the sample with probability overlay_prob until stopping condition.
If necessary, trims overlay audio to the length of the input audio. Overlays the images on top of each other with
a weight.

Overlays can be used in a few general ways:
1. a separate df where any file can be overlayed (overlay_class=None)

2. same df as training, where the overlay class is “different’ ie, does not contain overlapping labels
with the original sample

3. same df as training, where samples from a specific class are used for overlays

Parameters
* overlay_ df — alabels dataframe with audio files as the index and classes as columns
* audio_length - length in seconds of original audio sample
* loader_ pipeline - the preprocessing pipeline to load audio -> spec

* update_labels —if True, add overlayed sample’s labels to original sample

14.2. Preprocessing Actions 143

opensoundscape, Release 0.6.2

* overlay_class —how to choose files from overlay_df to overlay Options [default: “dif-
ferent”]: None - Randomly select any file from overlay_df “different” - Select a random file
from overlay_df containing none

of the classes this file contains
specific class name - always choose files from this class
* overlay_prob — the probability of applying each subsequent overlay

* max_overlay_ num — the maximum number of samples to overlay on original - for ex-
ample, if overlay_prob = 0.5 and max_overlay_num=2,

1/2 of images will recieve 1 overlay and 1/4 will recieve an additional second overlay

* overlay weight —a float > 0 and < 1, or a list of 2 floats [min, max] between which
the weight will be randomly chosen. e.g. [0.1,0.7] An overlay_weight <0.5 means more
emphasis on original image.

go (x, x_labels)
Overlay images from overlay_df

class opensoundscape.preprocess.actions.ImgToTensor (**kwargs)
Convert PIL image to RGB Tensor (PIL.Image -> Tensor)

convert PIL.Image w/range [0,255] to torch Tensor w/range [0,1] converts image to RGB (3 channels)

class opensoundscape.preprocess.actions.ImgToTensorGrayscale (**kwargs)
Convert PIL image to greyscale Tensor (PIL.Image -> Tensor)

convert PIL.Image w/range [0,255] to torch Tensor w/range [0,1] converts image to grayscale (1 channel)

class opensoundscape.preprocess.actions.SaveTensorToDisk (save_path, **kwargs)
save a torch Tensor to disk (Tensor -> Tensor)

Requires x_labels because the index of the label-row (.name) gives the original file name for this sample.
Uses torchvision.utils.save_image. Creates save_path dir if it doesn’t exist
Parameters save_path — a directory where tensor will be saved

go (x, x_labels)
we require x_labels because the .name gives origin file name

class opensoundscape.preprocess.actions.SpecTolImg (**kwargs)
Action class to transform Spectrogram to PIL image

(Spectrogram -> PIL.Image)
Parameters
* destination — a file path (string)
* shape=None — image dimensions for 1 channel, (height, width)
* mode="RGB" — RGB for 3-channel color or “L” for 1-channel grayscale
* colormap=None - (str) Matplotlib color map name (if None, greyscale)

class opensoundscape.preprocess.actions.SpectrogramBandpass (**kwargs)
Action class for Spectrogram.bandpass() (Spectrogram -> Spectrogram)

see opensoundscape.spectrogram.Spectrogram.bandpass() for documentation
To bandpass the spectrogram from 1kHz to 5Khz: action = SpectrogramBandpass(1000,5000)

Parameters

144 Chapter 14. Preprocessing

opensoundscape, Release 0.6.2

* min_f - low frequency in Hz for bandpass
* max_f — high frequency in Hz for bandpass
* out_of_bounds_ok - if False, raises error if min or max beyond spec limits

class opensoundscape.preprocess.actions.TensorAddNoise (**kwargs)
Add gaussian noise to sample (Tensor -> Tensor)

Parameters std — standard deviation for Gaussian noise [default: 1]
Note: be aware that scaling before/after this action will change the effect of a fixed stdev Gaussian noise

class opensoundscape.preprocess.actions.TensorAugment (**kwargs)
combination of 3 augmentations with hard-coded parameters

time warp, time mask, and frequency mask
use (bool) time_warp, time_mask, freq_mask to turn each on/off
Note: This function reduces the image to greyscale then duplicates the image across the 3 channels

go (x)
torch Tensor in, torch Tensor out

class opensoundscape.preprocess.actions.TensorNormalize (**kwargs)
torchvision.transforms.Normalize (WARNING: FIXED shift and scale)

(Tensor->Tensor)

WARNING: This does not perform per-image normalization. Instead, it takes as arguments a fixed u and s, ie
for the entire dataset, and performs X=(X-u)/s.

Params: mean=0.5 std=0.5

class opensoundscape.preprocess.actions.TimeMask (**kwargs)
add random vertical bars over image (Tensor -> Tensor)

Parameters
* max_masks — maximum number of bars [default: 3]
* max_width — maximum width of horizontal bars as fraction of image width
¢ [default -0.2]

class opensoundscape.preprocess.actions.TimeWarp (**kwargs)
Time warp is an experimental augmentation that creates a tilted image.

Parameters warp_amount — use higher values for more skew and offset (experimental)
Note: this augmentation reduces the image to greyscale and duplicates the result across the 3 channels.

class opensoundscape.preprocess.actions.TorchColorJitter (**kwargs)
Action class for torchvision.transforms.ColorJitter

(Tensor -> Tensor) or (PIL Img -> PIL Img)
Parameters
* brightness=0.3 -
* contrast=0.3 -
* saturation=0.3 -

* hue=0 -

14.2. Preprocessing Actions 145

opensoundscape, Release 0.6.2

class opensoundscape.preprocess.actions.TorchRandomAffine (**kwargs)
Action class for torchvision.transforms.RandomAffine

(Tensor -> Tensor) or (PIL Img -> PIL Img)
Parameters
e = 0 (degrees) —
o« =(fill)—

Note: If applying per-image normalization, we recommend applying RandomAffine after image normalization.
In this case, an intermediate gray value is ~0. If normalization is applied after RandomAffine on a PIL image,
use an intermediate fill color such as (122,122,122).

14.3 Preprocessors

class opensoundscape.preprocess.preprocessors.AudioLoadingPreprocessor (df,
re-
turn_labels=True,
au-
dio_length=None)
creates Audio objects from file paths

Parameters

» df — dataframe of audio clips. df must have audio paths in the index. If df has labels, the
class names should be the columns, and the values of each row should be O or 1. If data does
not have labels, df will have no columns

999,

* return_labels —if True, _ getitem__ returns {“X”:batch_tensors,’y”:labels} if False,
__getitem___ returns {“X”:batch_tensors} [default: True]

* audio_length - length in seconds of audio to return - None: do not trim the original
audio - seconds (float): trim longer audio to this length. Shorter audio input will raise a
ValueError.

class opensoundscape.preprocess.preprocessors.AudioToSpectrogramPreprocessor (df,
au-
dio_length=None,
out_shape=[224,
224],
re-

. turn_labels=True)
loads audio paths, creates spectrogram, returns tensor

by default, does not resample audio, but bandpasses to 0-11025 Hz (to ensure all outputs have same scale in
y-axis) can change with .actions.load_audio.set(sample_rate=sr)

Parameters

» df — dataframe of audio clips. df must have audio paths in the index. If df has labels, the
class names should be the columns, and the values of each row should be O or 1. If data does
not have labels, df will have no columns

* audio_length — length in seconds of audio clips [default: None] If provided, longer
clips trimmed to this length. By default, shorter clips will not be extended (modify ac-
tions.AudioTrimmer to change behavior).

146 Chapter 14. Preprocessing

opensoundscape, Release 0.6.2

* out_shape — output shape of tensor in pixels [default: [224,224]]

* return_labels - if True, the __getitem__ method will return {X:sample,y:labels} If
False, the __getitem__ method will return {X:sample} If df has no labels (no columns), use
return_labels=False [default: True]

class opensoundscape.preprocess.preprocessors.BasePreprocessor (df, re-

turn_labels=True)
Base class for Preprocessing pipelines (use in place of torch Dataset)

Custom Preprocessor classes should subclass this class or its children
Parameters

* df — dataframe of audio clips. df must have audio paths in the index. If df has labels, the
class names should be the columns, and the values of each row should be O or 1. If data does
not have labels, df will have no columns

* return_labels - if True, the __ getitem__ method will return {X:sample,y:labels} If
False, the __getitem__ method will return {X:sample} If df has no labels (no columns), use
return_labels=False [default: True]

Raises PreprocessingError if exception is raised during __getitem__

class_counts_cal ()
count number of each label

head (n=5)
out-of-place copy of first n samples

performs df.head(n) on self.df
Parameters
* n —number of first samples to return, see pandas.DataFrame.head()
¢ [default - 5]
Returns a new dataset object

pipeline_summary ()
Generate a DataFrame describing the current pipeline

The DataFrame has columns for name (corresponds to the attribute name, eg ‘to_img’ for
self.actions.to_img), on (not bypassed) / off (bypassed), and action_reference (a reference to the object)

sample (**kwargs)
out-of-place random sample

creates copy of object with n rows randomly sampled from dataframe
Args: see pandas.DataFrame.sample()
Returns a new dataset object

class opensoundscape.preprocess.preprocessors.ClipLoadingSpectrogramPreprocessor (df)
load audio samples from long audio files

Directly loads a part of an audio file, eg 5-10 seconds, without loading entire file. This alows for prediction on
long audio files without needing to pre-split or load large files into memory.

It will load the requested audio segments into samples, regardless of length

Parameters df — a dataframe with file paths as index and 2 columns: [‘start_time’,’end_time’]
(seconds since beginning of file)

Returns ClipLoadingSpectrogramPreprocessor object

14.3. Preprocessors 147

opensoundscape, Release 0.6.2

Examples: You can quickly create such a df for a set of audio files like this:

from opensoundscape.helpers import make_clip_df files = glob('/path_to/
*/x . WAV') #get list of full-length files clip_duration=5.0 clip_overlap =
0.0 clip_df = make_clip_df(files, clip_duration, clip_overlap)

If you use this preprocessor with model.predict(), it will work, but the scores/predictions df will only have file
paths not the times of clips. You will want to re-add the start and end times of clips as multi-index:

¢¢¢ score_df = model.predict(clip_loading_ds) #for instance score_df.index = pd.Multilndex.from_arrays(
[clip_df.index,clip_df[‘start_time’],clip_df[‘end_time’]]

class opensoundscape.preprocess.preprocessors.CnnPreprocessor (df, au-
dio_length=None,
re-
turn_labels=True,
debug=None,
over-
lay_df=None,
out_shape=[224,

224])
Child of AudioToSpectrogramPreprocessor with full augmentation pipeline

loads audio, creates spectrogram, performs augmentations, returns tensor

by default, does not resample audio, but bandpasses to 0-10 kHz (to ensure all outputs have same scale in y-axis)
can change with .actions.load_audio.set(sample_rate=sr)

Parameters

» df — dataframe of audio clips. df must have audio paths in the index. If df has labels, the
class names should be the columns, and the values of each row should be O or 1. If data does
not have labels, df will have no columns

* audio_length - length in seconds of audio clips [default: None] If provided, longer
clips trimmed to this length. By default, shorter clips will not be extended (modify ac-
tions.AudioTrimmer to change behavior).

* out_shape — output shape of tensor in pixels [default: [224,224]]

* return_labels - if True, the __ getitem__ method will return {X:sample,y:labels} If
False, the __getitem__ method will return {X:sample} If df has no labels (no columns), use
return_labels=False [default: True]

* debug - If a path is provided, generated samples (after all augmentation) will be saved to
the path as an image. This is useful for checking that the sample provided to the model
matches expectations. [default: None]

augmentation_off ()
use pipeline that skips all augmentations

augmentation_on ()
use pipeline containing all actions including augmentations

exception opensoundscape.preprocess.utils.PreprocessingError
Custom exception indicating that a Preprocessor pipeline failed

148 Chapter 14. Preprocessing

opensoundscape, Release 0.6.2

14.4 Tensor Augmentation

Augmentations and transforms for torch.Tensors

These functions were implemented for PyTorch in: https://github.com/zcaceres/spec_augment The original paper is

available on https://arxiv.org/abs/1904.08779

opensoundscape.preprocess.tensor_augment . freq _mask (spec, F=30, max_masks=3, re-
place_with_zero=False)
draws horizontal bars over the image

F:maximum frequency-width of bars in pixels
max_masks: maximum number of bars to draw
replace_with_zero: if True, bars are Os, otherwise, mean img value

opensoundscape.preprocess.tensor_augment .time_mask (spec, T=40, max_masks=3, re-
place_with_zero=False)
draws vertical bars over the image

T:maximum time-width of bars in pixels
max_masks: maximum number of bars to draw
replace_with_zero: if True, bars are Os, otherwise, mean img value

opensoundscape.preprocess.tensor_augment.time_warp (spec, W=5)
apply time stretch and shearing to spectrogram

fills empty space on right side with horizontal bars

W controls amount of warping. Random with occasional large warp.

14.4. Tensor Augmentation

149

https://github.com/zcaceres/spec_augment
https://arxiv.org/abs/1904.08779

opensoundscape, Release 0.6.2

150 Chapter 14. Preprocessing

cHAPTER 15

Signal Processing

15.1 RIBBIT

Detect periodic vocalizations with RIBBIT
This module provides functionality to search audio for periodically fluctuating vocalizations.

opensoundscape.ribbit.calculate_pulse_score (amplitude, amplitude_sample_rate,
pulse_rate_range, plot=False, nfft=1024)
Search for amplitude pulsing in an audio signal in a range of pulse repetition rates (PRR)

scores an audio amplitude signal by highest value of power spectral density in the PRR range

Parameters

* amplitude — a time series of the audio signal’s amplitude (for instance a smoothed raw
audio signal)

* amplitude_sample_rate — sample rate in Hz of amplitude signal, normally ~20-200
Hz

* pulse_rate_range — [min, max] values for amplitude modulation in Hz

* plot=False — if True, creates a plot visualizing the power spectral density

* nfft=1024 — controls the resolution of the power spectral density (see scipy.signal.welch)
Returns pulse rate score for this audio segment (float)

opensoundscape.ribbit.ribbit (spectrogram, signal_band, pulse_rate_range, clip_duration,
clip_overlap=0, final_clip=None, noise_bands=None, plot=False)
Run RIBBIT detector to search for periodic calls in audio

This tool searches for periodic energy fluctuations at specific repetition rates and frequencies.
Parameters
* spectrogram — opensoundscape.Spectrogram object of an audio file

* signal_band - [min, max] frequency range of the target species, in Hz

151

opensoundscape, Release 0.6.2

* pulse_rate_range — [min,max] pulses per second for the target species

* clip_duration - the length of audio (in seconds) to analyze at one time - each clip is
analyzed independently and recieves a ribbit score

* clip_overlap (float)— overlap between consecutive clips (sec)

* final_ clip (str) — behavior if final clip is less than clip_duration seconds long. By
default, discards remaining audio if less than clip_duration seconds long [default: None].
Options: - None: Discard the remainder (do not make a clip) - “remainder”: Use only
remainder of Audio (final clip will be shorter than clip_duration) - “full”: Increase overlap
with previous clip to yield a clip with clip_duration length Note that the “extend” option is
not supported for RIBBIT.

* noise_bands - list of frequency ranges to subtract from the signal_band For instance: [
[minl,max1], [min2,max2] | - if None, no noise bands are used - default: None

* plot=False - if True, plot the power spectral density for each clip

Returns DataFrame of index=("‘start_time’,’end_time’), columns=[‘score’], with a row for each clip.

Notes

__PARAMETERS__ RIBBIT requires the user to select a set of parameters that describe the target vocalization.
Here is some detailed advice on how to use these parameters.

Signal Band: The signal band is the frequency range where RIBBIT looks for the target species. It is best to
pick a narrow signal band if possible, so that the model focuses on a specific part of the spectrogram and has
less potential to include erronious sounds.

Noise Bands: Optionally, users can specify other frequency ranges called noise bands. Sounds in the
noise_bands are _subtracted_ from the signal_band. Noise bands help the model filter out erronious sounds
from the recordings, which could include confusion species, background noise, and popping/clicking of the
microphone due to rain, wind, or digital errors. It’s usually good to include one noise band for very low frequen-
cies — this specifically eliminates popping and clicking from being registered as a vocalization. It’s also good to
specify noise bands that target confusion species. Another approach is to specify two narrow noise_bands that
are directly above and below the signal_band.

Pulse Rate Range: This parameters specifies the minimum and maximum pulse rate (the number of pulses per
second, also known as pulse repetition rate) RIBBIT should look for to find the focal species. For example,
choosing pulse_rate_range = [10, 20] means that RIBBIT should look for pulses no slower than 10 pulses per
second and no faster than 20 pulses per second.

Clip Duration: The clip_duration parameter tells RIBBIT how many seconds of audio to analyze at one time.
Generally, you should choose a clip_length that is similar to the length of the target species vocalization, or a
little bit longer. For very slowly pulsing vocalizations, choose a longer window so that at least 5 pulses can
occur in one window (0.5 pulses per second -> 10 second window). Typical values for are 0.3 to 10 seconds.
Also, clip_overlap can be used for overlap between sequential clips. This is more computationally expensive
but will be more likely to center a target sound in the clip (with zero overlap, the target sound may be split up
between adjacent clips).

Plot: We can choose to show the power spectrum of pulse repetition rate for each window by setting plot=True.
The default is not to show these plots (plot=False).

__ALGORITHM__ This is the procedure RIBBIT follows: divide the audio into segments of length
clip_duration for each clip:

calculate time series of energy in signal band (signal_band) and subtract noise band energies
(noise_bands) calculate power spectral density of the amplitude time series score the file based on
the maximum value of power spectral density in the pulse rate range

152

Chapter 15. Signal Processing

opensoundscape, Release 0.6.2

15.2 Signal

Processing

Signal processing tools for feature extraction and more

opensoundscape.signal.cwt_peaks (audio, center_frequency, wavelet="morl’, peak_threshold=0.2,

peak_separation=None, plot=False)

compute a cwt, post-process, then extract peaks

Performs a continuous wavelet transform (cwt) on an audio signal at a single frequency. It then squares, smooths,
and normalizes the signal. Finally, it detects peaks in the resulting signal and returns the times and magnitudes
of detected peaks. It is used as a feature extractor for Ruffed Grouse drumming detection.

Parameters

audio — an Audio object
center_ frequency - the target frequency to extract peaks from
wavelet — (str) name of a pywt wavelet, eg ‘morl’ (see pywt docs)

peak_threshold — minimum height of peaks - if None, no minimum peak height - see
“height” argument to scipy.signal.find_peaks

peak_separation — minimum time between detected peaks, in seconds - if None, no
minimum distance - see “distance” argument to scipy.signal.find_peaks

Returns list of times (from beginning of signal) of each peak peak_levels: list of magnitudes of each
detected peak

Return type peak_times

Note: consider downsampling audio to reduce computational cost. Audio must have sample rate of at least 2x
target frequency.

opensoundscape.signal .detect_peak_sequence_cwt (audio, sr=400, win-

dow_len=60, center_frequency=50,
wavelet="morl’, peak_threshold=0.2,
peak_separation=0.0375,
dt_range=[0.05, 0.8], dy_range=[-
0.2, 0], d2y_range=[-0.05, 0.15],
max_skip=3, duration_range=[1, 15],
points_range=[9, 100], plot=False)

Use a continuous wavelet transform to detect accellerating sequences

This function creates a continuous wavelet transform (cwt) feature and searches for accelerating sequences of
peaks in the feature. It was developed to detect Ruffed Grouse drumming events in audio signals. Default
parameters are tuned for Ruffed Grouse drumming detection.

Analysis is performed on analysis windows of fixed length without overlap. Detections from each analysis
window across the audio file are aggregated.

Parameters

audio — Audio object

sr=400 - resample audio to this sample rate (Hz)
window_len=60 — length of analysis window (sec)
center_frequency=50 — target audio frequency of cwt

wavelet="morl' —(str) pywt wavelet name (see pywavelets docs)

15.2. Signal Processing 153

opensoundscape, Release 0.6.2

* peak_threshold=0.2 - height threhsold (0-1) for peaks in normalized signal
* peak_separation=15/400 — min separation (sec) for peak finding

* 0.8] (dt_range=[0.05,) — sequence detection point-to-point criterion 1 - Note: the
upper limit is also used as sequence termination criterion 2

* 0] (dy_range=[-0.2,) - sequence detection point-to-point criterion 2
* 0.15] (d2y_range=[-0.05,) — sequence detection point-to-point criterion 3
* max_skip=3 - sequence termination criterion 1: max sequential invalid points
* 15] (duration_range=[1,)—sequence criterion 1: length (sec) of sequence
* 100] (points_range=[9,)— sequence criterion 2: num points in sequence
* plot=False - if True, plot peaks and detected sequences with pyplot

Returns dataframe summarizing detected sequences

Note: for Ruffed Grouse drumming, which is very low pitched, audio is resampled to 400 Hz. This greatly
increases the efficiency of the cwt, but will only detect frequencies up to 400/2=200Hz. Generally, choose a
resample frequency as low as possible but >=2x the target frequency

Note: the cwt signal is normalized on each analysis window, so changing the analysis window size can change
the detection results.

Note: if there is an incomplete window remaining at the end of the audio file, it is discarded (not analyzed).

opensoundscape.signal.find_accel_sequences (t, dt_range=[0.05, 0.8], dy_range=[-0.2, 0],
d2y_range=[-0.05, 0.15], max_skip=3, dura-

tion_range=[1, 15], points_range=[5, 100])
detect accelerating/decelerating sequences in time series

developed for deteting Ruffed Grouse drumming events in a series of peaks extracted from cwt signal

The algorithm computes the forward difference of t, y(t). It iterates through the [y(t), t] points searching for
sequences of points that meet a set of conditions. It begins with an empty candidate sequence.

“Point-to-point criterea”: Valid ranges for dt, dy, and d2y are checked for each subsequent point and are based
on previous points in the candidate sequence. If they are met, the point is added to the candidate sequence.

“Continuation criterea”: Conditions for max_skip and the upper bound of dt are used to determine when a
sequence should be terminated.

» max_skip: max number of sequential invalid points before terminating
» dt<=dt_range[1]: if dt is long, sequence should be broken

“Sequence criterea”: When a sequence is terminated, it is evaluated on conditions for duration_range and
points_range. If it meets these conditions, it is saved as a detected sequence.

e duration_range: length of sequence in seconds from first to last point
¢ points_range: number of points included in sequence
When a sequence is terminated, the search continues with the next point and an empty sequence.
Parameters
* t — (list or np.array) times of all detected peaks (seconds)
* dt_range=[0.05, 0.8] — valid values for t(i) - t(i-1)

* dy_range=[-0.2, 0] — valid values for change in y (grouse: difference in time between
consecutive beats should decrease)

154 Chapter 15. Signal Processing

opensoundscape, Release 0.6.2

* d2y_range=[-.05,15] - limit change in dy: should not show large decrease (sharp
curve downward on y vs t plot)

* max_skip=3 - max invalid points between valid points for a sequence (grouse: should
not have many noisy points between beats)

* duration_range=[1,15] - total duration of sequence (sec)

* points_range=[9,100] — total number of points in sequence
Returns lists of t and y for each detected sequence
Return type sequences_t, sequences_y

opensoundscape.signal.frequency2scale (frequency, wavelet, sr)
determine appropriate wavelet scale for desired center frequency

Parameters
» frequency — desired center frequency of wavelet in Hz (1/seconds)
* wavelet — (str) name of pywt wavelet, eg ‘morl’ for Morlet
* sr —sample rate in Hz (1/seconds)
Returns (float) scale parameter for pywt.ctw() to extract desired frequency
Return type scale

Note: this function is not exactly an inverse of pywt.scale2frequency(), because that function returns frequency
in sample-units (cycles/sample) rather than frequency in Hz (cycles/second). In other words, freuquency_hz =
pywt.scale2frequency(w,scale)*sr.

15.2. Signal Processing 155

opensoundscape, Release 0.6.2

156 Chapter 15. Signal Processing

cHAPTER 16

Misc tools

16.1 Helpers

opensoundscape.helpers.binarize (x, threshold)
return a list of 0, 1 by thresholding vector x

opensoundscape.helpers.bound (x, bounds)
restrict X to a range of bounds = [min, max]

opensoundscape.helpers.file_name (path)
get file name without extension from a path

opensoundscape.helpers.generate_clip_times_df (full duration, clip_duration,

clip_overlap=0, final_clip=None)

generate start and end times for even-lengthed clips

The behavior for incomplete final clips at the end of the full_duration depends on the final_clip parameter.

This function only creates a dataframe with start and end times, it does not perform any actual trimming of audio
or other objects.

Parameters

full_duration — The amount of time (seconds) to split into clips
clip_duration (float) - The duration in seconds of the clips
clip_overlap (float)— The overlap of the clips in seconds [default: O]

final_clip (str) — Behavior if final_clip is less than clip_duration seconds long. By
default, discards remaining time if less than clip_duration seconds long [default: None].
Options:

— None: Discard the remainder (do not make a clip)
— 7extend”: Extend the final clip beyond full_duration to reach clip_duration length

— “remainder”: Use only remainder of full_duration (final clip will be shorter than
clip_duration)

157

opensoundscape, Release 0.6.2

— full”: Increase overlap with previous clip to yield a clip with clip_duration length

Returns DataFrame with columns for ‘start_time’, ‘end_time’, and ‘clip_duration’ of each clip
(which may differ from clip_duration argument for final clip only)

Return type clip_df

Note: using “remainder” or “full” with clip_overlap>0 is not recommended. This combination may result in
several duplications of the same final clip.

opensoundscape.helpers.hex_to_time (s)
convert a hexidecimal, Unix time string to a datetime timestamp in utc

Example usage: ‘““ # Get the UTC timestamp t = hex_to_time(‘SF16A04E’)

Convert it to a desired timezone my_timezone = pytz.timezone(“US/Mountain”) t =
t.astimezone(my_timezone) ¢“¢

Parameters s (string)—hexadecimal Unix epoch time string, e.g. ‘SF16A04E’
Returns datetime.datetime object representing the date and time in UTC

opensoundscape.helpers.inrange (x, r)
return true if x is in range [r[0],r1] (inclusive)

opensoundscape.helpers.isNan (x)
check for nan by equating x to itself

opensoundscape.helpers. jitter (x, width, distribution="gaussian’)
Jitter (add random noise to) each value of x

Parameters
* x —scalar, array, or nd-array of numeric type
* width — multiplier for random variable (stdev for ‘gaussian’ or r for ‘uniform’)

* distribution - ‘gaussian’ (default) or ‘uniform’ if ‘gaussian’: draw jitter from gaussian
with mu = 0, std = width if ‘uniform’: draw jitter from uniform on [-width, width]

Returns x + random jitter
Return type jittered_x

opensoundscape.helpers.linear_scale (array, in_range=(0, 1), out_range=(0, 255))
Translate from range in_range to out_range

Inputs: in_range: The starting range [default: (0, 1)] out_range: The output range [default: (0, 255)]
Outputs: new_array: A translated array

opensoundscape.helpers.make_clip_df (files, clip_duration, clip_overlap=0, final_clip=None)
generate df of fixed-length clip times for a set of file_batch_size

Used to prepare a dataframe for ClipLoadingSpectrogramPreprocessor

A typical prediction workflow: ‘¢ #get list of audio files files = glob(‘./dir/*.WAV”)
#generate clip df clip_df = make_clip_df(files,clip_duration=5.0,clip_overlap=0)
#create dataset dataset = ClipLoadingSpectrogramPreprocessor(clip_df)

#generate predictions with a model model = load_model(‘/path/to/saved.model’) scores, _, _ =
model.predict(dataset)

This function creates a single dataframe with audio files as the index and columns: ‘start_time’, ‘end_time’. It
will list clips of a fixed duration from the beginning to end of each audio file.

158 Chapter 16. Misc tools

opensoundscape, Release 0.6.2

Parameters
* files - list of audio file paths
* clip duration (float) - see generate_clip_times_df
* clip_overlap (float) — see generate_clip_times_df
* final_clip (str)—see generate_clip_times_df

opensoundscape.helpers.min_max_scale (array, feature_range=(0, 1))
rescale vaues in an a array linearly to feature_range

opensoundscape.helpers.overlap (rl, r2)
“calculate the amount of overlap between two real-numbered ranges

opensoundscape.helpers.overlap_fraction (rl, r2)
“calculate the fraction of r1 (low, high range) that overlaps with r2

opensoundscape.helpers.rescale_features (X, rescaling_vector=None)
rescale all features by dividing by the max value for each feature

optionally provide the rescaling vector (1xlen(X) np.array), so that you can rescale a new dataset consistently
with an old one

returns rescaled feature set and rescaling vector

opensoundscape.helpers.run_command (cmd)
run a bash command with Popen, return response

opensoundscape.helpers.sigmoid (x)
sigmoid function

16.2 Taxa

a set of utilites for converting between scientific and common names of bird species in different naming systems (xeno
canto and bird net)

opensoundscape.taxa.bn_common_to_sci (common)
convert bird net common name (ignoring dashes, spaces, case) to scientific name as lowercase-hyphenated

opensoundscape.taxa.common_to_sci (common)
convert bird net common name (ignoring dashes, spaces, case) to scientific name as lowercase-hyphenated

opensoundscape.taxa.get_species_list ()
list of scientific-names (lowercase-hyphenated) of species in the loaded species table

opensoundscape.taxa.sci_to_bn_common (scientific)
convert scientific name as lowercase-hyphenated to birdnet common name as lowercasenospaces

opensoundscape.taxa.sci_to_xc_common (scientific)
convert scientific name as lowercase-hyphenated to xeno-canto common name as lowercasenospaces

opensoundscape.taxa.xc_common_to_sci (common)
convert xeno-canto common name (ignoring dashes, spaces, case) to scientific name as lowercase-hyphenated

16.3 Localization

opensoundscape.localization.calc_speed_of_ sound (femperature=20)
Calculate speed of sound in meters per second

16.2. Taxa 159

opensoundscape, Release 0.6.2

Calculate speed of sound for a given temperature in Celsius (Humidity has a negligible effect on speed of sound
and so this functionality is not implemented)

Parameters temperature — ambient temperature in Celsius
Returns the speed of sound in meters per second

opensoundscape.localization.localize (receiver_positions, arrival_times, temperature=20.0,
invert_alg="gps’, center=True, pseudo=True)
Perform TDOA localization on a sound event

Localize a sound event given relative arrival times at multiple receivers. This function implements a localization
algorithm from the equations described in the class handout (“Global Positioning Systems”). Localization can
be performed in a global coordinate system in meters (i.e., UTM), or relative to recorder positions in meters.

Parameters

* receiver_positions — a list of [x,y,z] positions for each receiver Positions should be
in meters, e.g., the UTM coordinate system.

e arrival_times —alist of TDOA times (onset times) for each recorder The times should
be in seconds.

* temperature — ambient temperature in Celsius
* invert_alg — what inversion algorithm to use (only ‘gps’ is implemented)

* center — whether to center recorders before computing localization result. Computes
localization relative to centered plot, then translates solution back to original recorder loca-
tions. (For behavior of original Sound Finder, use True)

* pseudo — whether to use the pseudorange error (True) or sum of squares discrepancy
(False) to pick the solution to return (For behavior of original Sound Finder, use False.
However, in initial tests, pseudorange error appears to perform better.)

Returns The solution (x,y,z,b) with the lower sum of squares discrepancy b is the error in the pseu-
dorange (distance to mics), b=c*delta_t (delta_t is time error)

opensoundscape.localization.lorentz_ip (u, v=None)
Compute Lorentz inner product of two vectors

For vectors u and v, the Lorentz inner product for 3-dimensional case is defined as
u[0]*v[0] + u[1]*V[1] + u[2]*V[2] - u[3]*Vv[3]
Or, for 2-dimensional case as

u[0]*V[O0] + u[1]*v[1] - u[2]*Vv[2]

Parameters
* u — vector with shape either (3,) or (4,)
* v — vector with same shape as x1; if None (default), sets v=u
Returns value of Lorentz IP
Return type float
opensoundscape.localization.travel_time (source, receiver, speed_of_sound)
Calculate time required for sound to travel from a souce to a receiver
Parameters

* source — cartesian position [x,y] or [X,y,z] of sound source

160 Chapter 16. Misc tools

opensoundscape, Release 0.6.2

* receiver — cartesian position [x,y] or [X,y,z] of sound receiver
* speed_of_sound — speed of sound in m/s

Returns time in seconds for sound to travel from source to receiver

16.3. Localization 161

opensoundscape, Release 0.6.2

162 Chapter 16. Misc tools

cHAPTER 17

Index

163

opensoundscape, Release 0.6.2

164 Chapter 17. Index

cHAPTER 18

Modules

¢ modindex

165

opensoundscape, Release 0.6.2

166 Chapter 18. Modules

Python Module Index

o

opensoundscape.
opensoundscape.
opensoundscape.
opensoundscape.
opensoundscape.
opensoundscape.
opensoundscape.
opensoundscape.
opensoundscape.
opensoundscape.

141

opensoundscape.

146

opensoundscape.

149

opensoundscape.
opensoundscape.
opensoundscape.
opensoundscape.
opensoundscape.
opensoundscape.

133

opensoundscape.

136

opensoundscape.

137

opensoundscape.
opensoundscape.
opensoundscape.
opensoundscape.
opensoundscape.
opensoundscape.

annotations, 111

audio, 115
audio_tools, 120
audiomoth, 119
data_selection, 138
helpers, 157
localization, 159
metrics, 140
preprocess.actions, 141
preprocess.img_augment,

preprocess.preprocessors,
preprocess.tensor_augment,

preprocess.utils, 148

ribbit, 151

signal, 153

spectrogram, 122

taxa, 159
torch.architectures.cnn_architectures,

torch.architectures.resnet,
torch.architectures.utils,

torch.grad_cam, 138
torch.loss, 138
torch.models.cnn, 127
torch.models.utils, 132
torch.safe_dataset, 139
torch.sampling, 140

167

opensoundscape, Release 0.6.2

168 Python Module Index

Index

Symbols

_ _getitem__ () (opensound-
scape.torch.safe_dataset.SafeDataset method),
140

_build_index () (opensound-
scape.torch.safe_dataset.SafeDataset method),
140

_safe_get_item() (opensound-
scape.torch.safe_dataset.SafeDataset method),
140

A

ActionContainer (class in opensound-
scape.preprocess.actions), 141

alexnet () (in module opensound-
scape.torch.architectures.cnn_architectures),
134

amplitude () (opensound-
scape.spectrogram.Spectrogram method),
124

apply_activation_layer () (in module open-
soundscape.torch.models.utils), 132
Audio (class in opensoundscape.audio), 115

audio_sample_rate (opensound-
scape.spectrogram.Spectrogram attribute),
124

AudioClipLoader (class in opensound-
scape.preprocess.actions), 142

AudioLoader (class in opensound-

scape.preprocess.actions), 142
AudioLoadingPreprocessor (class in opensound-
scape.preprocess.preprocessors), 146
audiomoth_start_time () (in module opensound-

scape.audiomoth), 119
AudioToMelSpectrogram (class

scape.preprocess.actions), 142
AudioToSpectrogram (class in

scape.preprocess.actions), 142
AudioToSpectrogramPreprocessor (class in

in opensound-

opensound-

opensoundscape.preprocess.preprocessors),

146
AudioTrimmer (class in opensound-
scape.preprocess.actions), 142
augmentation_off () (opensound-

scape.preprocess.preprocessors.CnnPreprocessor

method), 148

augmentation_on () (opensound-

scape.preprocess.preprocessors.CnnPreprocessor

method), 148

B

bandpass () (opensound-
scape.annotations.BoxedAnnotations method),
111

bandpass () (opensoundscape.audio.Audio method),
116

bandpass () (opensound-
scape.spectrogram.Spectrogram method),
124

bandpass_filter () (in module opensound-
scape.audio_tools), 120

BaseAction (class in opensound-
scape.preprocess.actions), 143

BaseArchitecture (class in opensound-
scape.torch.architectures.utils), 137

BaseModule (class in opensound-
scape.torch.models.utils), 132

BasePreprocessor (class in opensound-

scape.preprocess.preprocessors), 147
BCEWithLogitsLoss_hot (class in opensound-
scape.torch.loss), 138
binarize () (in module opensoundscape.helpers), 157

binary_metrics () (in module opensound-
scape.metrics), 140
bn_common_to_sci() (in module opensound-

scape.taxa), 159
bound () (in module opensoundscape.helpers), 157
BoxedAnnotations (class in opensound-
scape.annotations), 111

169

opensoundscape, Release 0.6.2

butter_bandpass () (in module opensound-

scape.audio_tools), 120

C

calc_speed_of_sound() (in module opensound-
scape.localization), 159
calculate_pulse_score()
soundscape.ribbit), 151
cas_dataloader () (in module
scape.torch.models.utils), 132
categorical_to_one_hot () (in module open-
soundscape.annotations), 114
class_counts_cal ()

(in module open-

opensound-

(opensound-

scape.preprocess.preprocessors.BasePreprocessor

method), 147
ClassAwareSampler (class in
scape.torch.sampling), 140
ClipLoadingSpectrogramPreprocessor (class
in opensoundscape.preprocess.preprocessors),
147
clipping_detector () (in module opensound-
scape.audio_tools), 120

opensound-

CnnPreprocessor (class in opensound-
scape.preprocess.preprocessors), 148
CnnResampleloss (class in opensound-

scape.torch.models.cnn), 127

collate_lists_of_audio_clips () (in module
opensoundscape.torch.models.utils), 132

combine () (in module opensoundscape.annotations),
114

common_to_sci () (in module opensoundscape.taxa),
159

CompositeArchitecture (class in opensound-
scape.torch.architectures.utils), 137

convert_labels () (opensound-
scape.annotations.BoxedAnnotations method),
111

convolve_file () (in module opensound-
scape.audio_tools), 121
CrossEntropyLoss_hot (class in opensound-

scape.torch.loss), 138
cwt_peaks () (in module opensoundscape.signal), 153

D

decibel_limits (opensound-
scape.spectrogram.Spectrogram attribute),
123

densenet121 () (in module opensound-
scape.torch.architectures.cnn_architectures),
134

detect_peak_sequence_cwt () (in module open-
soundscape.signal), 153
diff () (in module opensoundscape.annotations), 114

duration () (opensoundscape.audio.Audio method),
116

duration () (opensound-
scape.spectrogram.Spectrogram method),
124

E

extend () (opensoundscape.audio.Audio method), 116

F

file_name ()
157

find_accel_sequences () (in module opensound-

scape.signal), 154

freq mask () (in module opensound-
scape.preprocess.tensor_augment), 149

(in module opensoundscape.helpers),

frequencies (opensound-
scape.spectrogram.Spectrogram attribute),
123

frequency2scale () (in module opensound-
scape.signal), 155

FrequencyMask (class in opensound-
scape.preprocess.actions), 143

from_audio () (opensound-
scape.spectrogram.MelSpectrogram class
method), 122

from_audio () (opensound-
scape.spectrogram.Spectrogram class method),

124
from_bytesio () (opensoundscape.audio.Audio class
method), 116

from_file () (opensoundscape.audio.Audio class
method), 116

from_file () (opensound-
scape.spectrogram.Spectrogram class method),
124

from_raven_file () (opensound-
scape.annotations.BoxedAnnotations class

method), 112

G

generate_clip_times_df ()
soundscape.helpers), 157

(in module open-

get_batch () (in module opensound-
scape.torch.models.utils), 132
get_dataloader () (in module opensound-
scape.torch.models.utils), 133
get_species_list () (in module opensound-
scape.taxa), 159
global_one_hot_labels () (opensound-

scape.annotations.BoxedAnnotations method),
112

go () (opensoundscape.preprocess.actions.FrequencyMask
method), 143

170

Index

opensoundscape, Release 0.6.2

go ()
method), 144

(opensoundscape.preprocess.actions.ImgOverlay localize () (in module opensoundscape.localization),

go () (opensoundscape.preprocess.actions.SaveTensorToDidloop () (opensoundscape.audio.Audio method), 117

method), 144

go () (opensoundscape.preprocess.actions.TensorAugment

method), 145

H

head () (opensoundscape.preprocess.preprocessors.BasePreprocessacape.helpers), 158

method), 147
hex_to_time () (in module opensoundscape.helpers),
158

ImbalancedDatasetSampler (class in opensound-
scape.torch.sampling), 140

ImgOverlay (class in opensound-
scape.preprocess.actions), 143

ImgToTensor (class in opensound-
scape.preprocess.actions), 144

ImgToTensorGrayscale (class in opensound-
scape.preprocess.actions), 144

inception_v3() (in module opensound-
scape.torch.architectures.cnn_architectures),
134

InceptionV3 (class in opensound-

scape.torch.models.cnn), 127
InceptionV3ResampleLoss (class in opensound-
scape.torch.models.cnn), 128
inrange () (in module opensoundscape.helpers), 158
is_index_built (opensound-
scape.torch.safe_dataset.SafeDataset at-
tribute), 140
isNan () (in module opensoundscape.helpers), 158

J

jitter () (in module opensoundscape.helpers), 158

L

limit_db_range () (opensound-
scape.spectrogram.Spectrogram method),
124

linear_scale () (in module opensound-
scape.helpers), 158

linear_scale () (opensound-
scape.spectrogram.Spectrogram method),

125

160

lorentz_ip () (in module opensound-
scape.localization), 160

M

make_clip_df () (in module opensound-

MelSpectrogram (class in opensound-
scape.spectrogram), 122

min_max_scale () (in module opensound-
scape.helpers), 159

min_max_scale () (opensound-
scape.spectrogram.Spectrogram method),

125
mixdown_with_delays () (in module opensound-
scape.audio_tools), 121
multiclass_metrics () (in module opensound-
scape.metrics), 140

N

net_amplitude () (opensound-
scape.spectrogram.Spectrogram method),
125

one_hot_clip_labels() (opensound-

scape.annotations.BoxedAnnotations method),
112

one_hot_labels_like () (opensound-
scape.annotations.BoxedAnnotations method),
113

one_hot_labels_on_time_interval () (in
module opensoundscape.annotations), 114

one_hot_to_categorical () (in module open-
soundscape.annotations), 115

opensoundscape.annotations (module), 111
opensoundscape.audio (module), 115
opensoundscape.audio_tools (module), 120
opensoundscape .audiomoth (module), 119
opensoundscape.data_selection (module),
138
opensoundscape.helpers (module), 157
opensoundscape.localization (module), 159
opensoundscape .metrics (module), 140
opensoundscape.preprocess.actions (mod-

load() (Opensoundscape.torch.architectures.resnet.ResNetArchitecn%lé)’ 141

method), 137
load_model () (in module
scape.torch.models.cnn), 131
load_outdated_model () (in module opensound-
scape.torch.models.cnn), 131

opensound-

opensoundscape.preprocess.img_augment
(module), 141

opensoundscape.preprocess.preprocessors
(module), 146

opensoundscape.preprocess.tensor_augment
(module), 149

Index

171

opensoundscape, Release 0.6.2

opensoundscape.preprocess.utils (module), resample () (in module opensound-
148 scape.data_selection), 138
opensoundscape.ribbit (module), 151 resample () (opensoundscape.audio.Audio method),
opensoundscape.signal (module), 153 117
opensoundscape. spectrogram (module), 122 ResampleLoss (class in opensoundscape.torch.loss),
opensoundscape .taxa (module), 159 139
opensoundscape.torch.architectures.cnn_arehdadetfieesures () (in module opensound-
(module), 133 scape.helpers), 159
opensoundscape.torch.architectures.resnekresnet101 () (in module opensound-
(module), 136 scape.torch.architectures.cnn_architectures),
opensoundscape.torch.architectures.utils 134
(module), 137 resnetl52 () (in module opensound-
opensoundscape.torch.grad_cam (module), scape.torch.architectures.cnn_architectures),
138 135
opensoundscape.torch. loss (module), 138 resnet18() (in module opensound-
opensoundscape.torch.models.cnn (module), scape.torch.architectures.cnn_architectures),
127 135
opensoundscape.torch.models.utils (mod- Resnetl8Binary (class in opensound-
ule), 132 scape.torch.models.cnn), 130
opensoundscape.torch.safe_dataset (mod- Resnetl8Multiclass (class in opensound-
ule), 139 scape.torch.models.cnn), 130
opensoundscape.torch.sampling (module), resnet34 () (in module opensound-
140 scape.torch.architectures.cnn_architectures),
OpsolLoadAudioInputError, 119 135
OpsoLoadAudioInputTooLong, 119 resnet50 () (in module opensound-
overlap () (in module opensoundscape.helpers), 159 scape.torch.architectures.cnn_architectures),
overlap_fraction() (in module opensound- 135
scape.helpers), 159 ResNetArchitecture (class in opensound-
overlap_samples (opensound- scape.torch.architectures.resnet), 136
scape.spectrogram.Spectrogram attribute), ResNetFeature (class in opensound-
123 scape.torch.architectures.resnet), 137
ribbit () (in module opensoundscape.ribbit), 151
P run_command () (in module opensoundscape.helpers),
parse_audiomoth_metadata () (in module open- 159
soundscape.audiomoth), 119
pipeline_summary () (opensound- S
scape.preprocess.preprocessors.BasePreprocessorSafeDataset (class in opensound-
method), 147 scape.torch.safe_dataset), 139
plot () (opensoundscape.spectrogram.MelSpectrogram sample () (opensound-
method), 123 scape.preprocess.preprocessors.BasePreprocessor
plot () (opensoundscape.spectrogram.Spectrogram method), 147
method), 125 save () (opensoundscape.audio.Audio method), 117
predict () (in module opensoundscape.metrics), 140 SaveTensorToDisk (class in opensound-
predict () (opensound- scape.preprocess.actions), 144
scape.torch.models.cnn. PytorchModel sci_to_bn_common () (in module opensound-
method), 128 scape.taxa), 159
PreprocessingError, 148 sci_to_xc_common () (in module opensound-
PytorchModel (class in opensound- scape.taxa), 159
scape.torch.models.cnn), 128 set_parameter_requires_grad()
(in module opensound-
R scape.torch.architectures.cnn_architectures),
reduce_loss () (in module opensound- 136
scape.torch.loss), 139 sigmoid () (in module opensoundscape.helpers), 159

172 Index

opensoundscape, Release 0.6.2

silence_filter () (in module opensound-
scape.audio_tools), 121
SpecToImg (class in opensound-

scape.preprocess.actions), 144
Spectrogram (class in opensoundscape.spectrogram,),

123

spectrogram (opensound-
scape.spectrogram.Spectrogram attribute),
123

SpectrogramBandpass (class in opensound-

scape.preprocess.actions), 144

spectrum () (opensoundscape.audio.Audio method),
118

split () (opensoundscape.audio.Audio method), 118

split_and_predict () (opensound-
scape.torch.models.cnn. PytorchModel

method), 129

split_and_save () (opensoundscape.audio.Audio
method), 118

squeezenetl_0 () (in module opensound-
scape.torch.architectures.cnn_architectures),
136

subset () (opensound-

114

TorchColorJitter (class in opensound-
scape.preprocess.actions), 145

TorchRandomAffine (class in opensound-
scape.preprocess.actions), 145

train () (opensound-

scape.torch.models.cnn. PytorchModel
method), 129

train_epoch() (opensound-
scape.torch.models.cnn.InceptionV3 method),
127

train_epoch () (opensound-

scape.torch.models.cnn. PytorchModel
method), 130
travel_time () (in module
scape.localization), 160
trim() (opensoundscape.annotations.BoxedAnnotations
method), 114
trim() (opensoundscape.audio.Audio method), 119
trim() (opensoundscape.spectrogram.Spectrogram

method), 126

opensound-

U

scape.annotations.BoxedAnnotations method), unique_labels () (opensound-
113 scape.annotations.BoxedAnnotations method),
T 114
upsample () (in module opensound-
tensor_binary_predictions () (in module scape.data_selection), 138
opensoundscape.torch.models.utils), 133
TensorAddNoise (class in opensound- Vv
scape.preprocess.actions), 1.45 vggll_bn () (in module opensound-
TensorAugment (class n opensound- scape.torch.architectures.cnn_architectures),
scape.preprocess.actions), 145 136
TensorNormalize (class in opensound-
scape.preprocess.actions), 145 W
time_mask () (in module opensound- weight_reduce_loss () (in module opensound-
scape.preprocess.tensor_augment), 149 scape.torch.loss), 139
time_split () (in] module opensound- window_energy () (in module opensound-
scape.preprocess.img_augment), 141 scape.audio_tools), 122
time_to_sample () (opensoundscape.audio.Audio window_length () (opensound-
method), 119 scape.spectrogram.Spectrogram method),
time_warp () (in module opensound- 126
scape.preprocess.tensor_augment), 149 window_samples (opensound-
TimeMask (class n opensound- scape.spectrogram.Spectrogram attribute),
scape.preprocess.actions), 145 123
times (opensoundscape.spectrogram.Spectrogram at- .i.dow start times 0 (opensound-
tribute), 123 _ scape.spectrogram.Spectrogram method),
TimeWarp (class in opensound- 126
scape.preprocess.actions), 145 window_step () (opensound-
to_image () (opensound- scape.spectrogram.Spectrogram method),
scape.spectrogram.Spectrogram method), 126
125 . window_type (opensound-
to_raven file() _ _ (opensound- scape.spectrogram.Spectrogram attribute),
scape.annotations.BoxedAnnotations method), 124
Index 173

opensoundscape, Release 0.6.2

X

xc_common_to_sci() (in module opensound-
scape.taxa), 159

174 Index

	Mac and Linux
	Installation via Anaconda
	Installation via venv

	Windows
	Get Ubuntu shell
	Download Anaconda
	Install OpenSoundscape in virtual environment

	Contributors
	Poetry installation
	Contribution workflow

	Jupyter
	Use virtual environment
	Create independent kernel

	Audio and spectrograms
	Quick start
	Audio loading
	Audio methods
	Spectrogram creation
	Spectrogram methods

	Manipulating audio annotations
	download example files
	View a subset of annotations
	saving annotations to Raven-compatible file
	1. Split Audio object, then split annotations to match
	2. Split annotations into labels (without audio splitting)
	3. Split annotations directly using splitting parameters
	find all the Raven and audio files, and see if they match up one-to-one
	split and save the audio and annotations
	sanity check: look at spectrograms of clips labeled 0 and 1

	Prediction with pre-trained CNNs
	Load required packages
	Load a saved model
	generate predictions with the model
	Using models from older OpenSoundscape versions
	Options for prediction
	Deprecated: Using LongAudioPreprocessor to predict on (un-split) audio files

	Beginner friendly training and prediction with CNNs
	Prepare audio data
	Training
	Prediction
	Multi-class models
	Save and load models
	Predict using saved model
	Continue training from saved model
	Next steps

	Custom preprocessing
	Preparing audio data
	Intro to Preprocessors
	Pipelines and actions
	Modifying Actions
	Modifying the pipeline
	Customizing AudioToSpectrogramPreprocessor
	Customizing CnnPreprocessor
	Creating a new Preprocessor class
	Defining new Actions

	Advanced CNN training
	Prepare audio data
	Creating a model
	Model training parameters
	Selecting CNN architectures
	Sampling for imbalanced training data
	Multi-target training with CnnResampleLoss
	Training and predicting with custom preprocessors

	RIBBIT Pulse Rate model demonstration
	Import packages
	Download example audio
	Select model parameters
	Search for pulsing vocalizations with ribbit()
	Analyzing a set of files
	Run RIBBIT on multiple species simultaneously
	Detail view of RIBBIT method
	Time to experiment for yourself

	Audio and Spectrograms
	Annotations
	Audio
	AudioMoth
	Audio Tools
	Spectrogram

	Machine Learning
	Convolutional Neural Networks
	Data Selection
	Grad Cam
	Loss Functions
	Safe Dataloading
	Sampling
	Performance Metrics

	Preprocessing
	Image Augmentation
	Preprocessing Actions
	Preprocessors
	Tensor Augmentation

	Signal Processing
	RIBBIT
	Signal Processing

	Misc tools
	Helpers
	Taxa
	Localization

	Index
	Modules
	Python Module Index
	Index

